Олимпиадные задачи из источника «2011 год» для 7 класса

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что  <i>a = b</i>.

Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.

Может ли ломаная пройти через все вершины клеток?

Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?

Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?

В вершинах шестиугольника <i>ABCDEF</i> (см. рис.) лежали 6 одинаковых на вид шариков: в <i>A</i> — массой 1 г, в <i>B</i> — 2 г, ..., в <i>F</i> — 6 г. Шутник поменял местами два шарика в противоположных вершинах. Имеются двухчашечные весы, позволяющие узнать, в какой из чаш масса шариков больше. Как за одно взвешивание определить, какие именно шарики переставлены?<div align="center"><img src="/storage/problem-media/116208/problem_116208_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка