Олимпиадные задачи из источника «2011 год» для 8 класса
На доске выписано (<i>n</i> – 1)<i>n</i> выражений: <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub>, <i>x</i><sub>1</sub> – <i>x</i><sub>3</sub>, ..., <i>x</i><sub>1</sub> – <i>x<sub>n</sub></i>, <i>x</i><sub>2</sub> – <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub> – <i>x</i><sub>3</sub>, ..., <i>x</i><sub>2</sub> – <i>x<sub>n</sub></i>, ..., <i>x<sub>n</sub></i> – <i>x</i><sub><i>n</i>–1</sub>, где <i>n</i&...
На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?
В прямоугольном треугольнике <i>ABC</i> с прямым углом <i>C</i> угол <i>A</i> равен 30°, точка <i>I</i> – центр вписанной окружности <i>ABC, D</i> – точка пересечения отрезка <i>BI</i> с этой окружностью. Докажите, что отрезки <i>AI</i> и <i>CD</i> перпендикулярны.
В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?
Что больше: 2011<sup>2011</sup> + 2009<sup>2009</sup> или 2011<sup>2009</sup> + 2009<sup>2011</sup>?
В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что <i>a = b</i>.
Точки <i>M</i> и <i>N</i> – середины боковых сторон <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i>. Перпендикуляр, опущенный из точки <i>M</i> на диагональ <i>AC</i>, и перпендикуляр, опущенный из точки <i>N</i> на диагональ <i>BD</i>, пересекаются в точке <i>P</i>. Докажите, что <i>PA = PD</i>.
Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.
Может ли ломаная пройти через все вершины клеток?
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?
Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?
В вершинах шестиугольника <i>ABCDEF</i> (см. рис.) лежали 6 одинаковых на вид шариков: в <i>A</i> — массой 1 г, в <i>B</i> — 2 г, ..., в <i>F</i> — 6 г. Шутник поменял местами два шарика в противоположных вершинах. Имеются двухчашечные весы, позволяющие узнать, в какой из чаш масса шариков больше. Как за одно взвешивание определить, какие именно шарики переставлены?<div align="center"><img src="/storage/problem-media/116208/problem_116208_img_2.gif"></div>