Олимпиадные задачи из источника «2011 год» - сложность 3 с решениями

В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма <i>k</i> наибольших чисел равна <i>a</i>, а в каждом столбце таблицы сумма <i>k</i> наибольших чисел равна <i>b</i>.

  а) Докажите, что если  <i>k</i> = 2,  то  <i>a = b</i>.

  б) В случае  <i>k</i> = 3  приведите пример такой таблицы, для которой  <i>a ≠ b</i>.

Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что проекции каждых двух из них на эту грань не перекрываются.

На доске выписано  (<i>n</i> – 1)<i>n</i>  выражений:   <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub>,  <i>x</i><sub>1</sub> – <i>x</i><sub>3</sub>,  ...,  <i>x</i><sub>1</sub> – <i>x<sub>n</sub></i>,  <i>x</i><sub>2</sub> – <i>x</i><sub>1</sub>,  <i>x</i><sub>2</sub> – <i>x</i><sub>3</sub>,  ...,  <i>x</i><sub>2</sub> – <i>x<sub>n</sub></i>,  ...,  <i>x<sub>n</sub></i> – <i>x</i><sub><i>n</i>–1</sub>,   где  <i>n</i&...

На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что  <i>a = b</i>.

Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.

Может ли ломаная пройти через все вершины клеток?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка