Олимпиадные задачи из источника «1958 год» для 10 класса
На<i>n</i>карточках написаны с разных сторон числа — на 1-й: 0 и 1; на 2-й: 1 и 2; ...; на<i>n</i>-й:<i>n</i>- 1 и<i>n</i>.
Один человек берёт из стопки несколько карточек и показывает второму одну сторону каждой из них. Затем берёт из стопки еще одну карточку и тоже показывает одну сторону.
Указать все случаи, в которых второй может определить число, написанное на обороте последней показанной ему карточки.
В школе изучают 2<i>n</i> предметов. Все ученики учатся на 4 и 5. Никакие два ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них учится лучше другого. Доказать, что число учеников в школе не больше <img align="absmiddle" src="/storage/problem-media/78166/problem_78166_img_2.gif"> .
(Мы считаем, что ученик <i>p</i> учится лучше ученика <i>q</i>, если у <i>p</i> оценки по всем предметам не ниже, чем у <i>q</i>, а по некоторым предметам – выше.)
В многоугольнике существуют такие точки<i>A</i>и<i>B</i>, что любая соединяющая их ломаная, проходящая внутри или по границе многоугольника, имеет длину больше
- Доказать, что периметр многоугольника больше 2.
Решить в натуральных числах уравнение <i>x</i><sup>2<i>y</i></sup> + (<i>x</i> + 1)<sup>2<i>y</i></sup> = (<i>x</i> + 2)<sup>2<i>y</i></sup>.
Между зажимами <i>A</i> и <i>B</i> включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы <i>A</i> и <i>B</i>, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)
Обозначим через<i>a</i>наименьшее число кругов радиуса 1, которыми можно полностью покрыть заданный многоугольник<i>M</i>, через<i>b</i>— наибольшее число непересекающихся кругов радиуса 1 с центрами внутри многоугольника<i>M</i>. Какое из чисел больше,<i>a</i>или<i>b</i>?
Игральная доска имеет форму ромба с углом 60°. Каждая сторона ромба разделена на девять частей. Через точки деления проведены прямые, параллельные сторонам и малой диагонали ромба, разбивающие доску на треугольные клетки. Если на некоторой клетке поставлена фишка, проведём через эту клетку три прямые, параллельные сторонам и малой диагонали ромба. Клетки, которые они пересекут, будут считаться побитыми фишкой. Каким наименьшим числом фишек можно побить все клетки доски?
Провести из точки<i>O</i><i>n</i>лучей на плоскости так, чтобы сумма всех попарных углов между ними была наибольшей. (Рассматриваются только углы, не превышающие180<sup><tt>o</tt></sup>.)
Решить в натуральных числах уравнение <i>x</i><sup>2<i>y</i>–1</sup> + (<i>x</i> + 1)<sup>2<i>y</i>–1</sup> = (<i>x</i> + 2)<sup>2<i>y</i>–1</sup>.
Обозначим через<i>a</i>наибольшее число непересекающихся кругов диаметра 1, центры которых лежат внутри многоугольника<i>M</i>, через<i>b</i>— наименьшее число кругов радиуса 1, которыми можно покрыть весь многоугольник<i>M</i>.
Какое число больше:<i>a</i>или<i>b</i>?
Доказать, что если целое <i>n</i> > 1, то 1<sup>1</sup>·2²·3³·...·<i>n<sup>n</sup> < n</i><sup><i>n</i>(<i>n</i>+1)/2</sup>.
Внутри угла <i>AOB</i> взята точка <i>C</i>, опущены перпендикуляры <i>CD</i> на сторону <i>OA</i> и <i>CE</i> на сторону <i>OB</i>. Затем опущены перпендикуляры <i>EM</i> на сторону <i>OA</i> и <i>DN</i> на сторону <i>OB</i>. Доказать, что <i>OC</i> ⊥ <i>MN</i>.
Для любых чисел <i>a</i><sub>1</sub> и <i>a</i><sub>2</sub>, удовлетворяющих условиям <i>a</i><sub>1</sub> ≥ 0, <i>a</i><sub>2</sub> ≥ 0, <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> = 1, можно найти такие числа <i>b</i><sub>1</sub> и <i>b</i><sub>2</sub>, что <i>b</i><sub>1</sub> ≥ 0, <i>b</i><sub>2</sub> ≥ 0, <i>b</i><sub>1</sub> + <i>b</i><sub>2</sub> = 1,
(<sup>5</sup>/<sub>4</sub> – <i>a</i><sub>1</sub>)<i>b</i><sub>1</sub>...
Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком, по которому многоугольник складывается. Доказать, что периметр многоугольника, получающегося после складывания, меньше периметра исходного многоугольника.
Доказать, что на плоскости нельзя расположить больше четырёх выпуклых многоугольников так, чтобы каждые два из них имели общую сторону.
На плоскости даны четыре прямые, из которых никакие две не параллельны, и никакие три не пересекаются в одной точке. По каждой прямой с постоянной скоростью идёт пешеход. Известно, что первый встречается со вторым, с третьим и с четвёртым, а второй встречается с третьим и с четвёртым. Доказать, что третий пешеход встретится с четвёртым.
Доказать, что 1155<sup>1958</sup> + 34<sup>1958</sup> ≠ <i>n</i>², где <i>n</i> – целое.
Проекции плоского выпуклого многоугольника на ось<i>OX</i>, биссектрису 1-го и 3-го координатных углов, ось<i>OY</i>и биссектрису 2-го и 4-го координатных углов соответственно равны 4, 3$\sqrt{2}$, 5, 4$\sqrt{2}$. Площадь многоугольника равна<i>S</i>. Доказать, что<i>S</i>$\ge$10.
Отрезок длиной 3<sup>n</sup>разбивается на три равные части. Первая и третья из них называются отмеченными. Каждый из отмеченных отрезков разбивается на три части, из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются отмеченными точками. Доказать, что для любого целого<i>k</i>(1$\le$<i>k</i>$\le$3<sup>n</sup>) можно найти две отмеченные точки, расстояние между которыми равно<i>k</i>.
Решить в целых положительных числах уравнение
<div align="center"><img src="/storage/problem-media/78143/problem_78143_img_2.gif"></div>
Какое наибольшее число осей симметрии может иметь пространственная фигура, состоящая из трёх прямых, из которых никакие две не параллельны и не совпадают?
Доказать, что если |<i>ax</i>² – <i>bx + c</i>| < 1 при любом <i>x</i> из отрезка [–1, 1], то и |(<i>a + b</i>)<i>x</i>² + <i>c</i>| < 1 на этом отрезке.
Бесконечная плоская ломаная<i>A</i><sub>0</sub><i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>..., все углы которой прямые, начинается в точке<i>A</i><sub>0</sub>с координатами<i>x</i>= 0,<i>y</i>= 1 и обходит начало координат<i>O</i>по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает одну из координатных осей и имеет наименьшую возможную при этом целочисленную длину. Расстояние<i>OA</i><sub>n</sub>=<i>l</i><sub>n</sub>. Сумма длин первых<i>n</i>звеньев ломаной равна<i>s</i><sub>n</sub>. До...
Проекции многоугольника на ось<i>OX</i>, биссектрису 1-го и 3-го координатных углов, ось<i>OY</i>и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$\sqrt{2}$, 5, 4$\sqrt{2}$. Площадь многоугольника —<i>S</i>. Доказать, что<i>S</i>$\le$17, 5.
Решить в натуральных числах уравнение <div align="center"><img src="/storage/problem-media/78138/problem_78138_img_2.gif"></div>