Олимпиадные задачи из источника «7 класс, 2 тур»

Сторона клетки клетчатой бумаги равна 1. По линиям сетки построен прямоугольник со сторонами <i>m</i> и <i>n</i>. Можно ли в прямоугольнике провести по линиям сетки замкнутую ломаную, которая ровно один раз проходила бы через каждый узел сетки, расположенный внутри или на границе прямоугольника? Если можно, то какова её длина?

Доказать, что если целое  <i>n</i> > 2,  то  (<i>n</i>!)² > <i>n<sup>n</sup></i>.

Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?

Имеются два набора из чисел 1 и –1, в каждом по 1958 чисел. Доказать, что за некоторое число шагов можно превратить первый набор во второй, если на каждом шагу разрешается одновременно изменить знак у любых 11 чисел первого набора. (Два набора считаются одинаковыми, если у них на одинаковых местах стоят одинаковые числа.)

Доказать, что на плоскости нельзя расположить больше четырёх выпуклых многоугольников так, чтобы каждые два из них имели общую сторону.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка