Олимпиадные задачи из источника «1971 год» для 11 класса - сложность 4-5 с решениями
а) Доказать, что сумма цифр числа <i>K</i> не более чем в 8 раз превосходит сумму цифр числа 8<i>K</i>.
б) Для каких натуральных <i>k</i> существует такое положительное число <i>c<sub>k</sub></i>, что <img align="absmiddle" src="/storage/problem-media/78791/problem_78791_img_2.gif"> ≥ <i>c<sub>k</sub></i> для всех натуральных <i>N</i>? Найдите наибольшее подходящее значение <i>c<sub>k</sub></i>.
Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это.
С четырёх сторон шахматной доски размером <i>n×n</i> построена кайма шириной в два поля. Докажите, что кайму можно обойти шахматным конём, побывав на каждом поле один и только один раз, в тех и только тех случаях, когда <i>n</i> – 1 кратно 4.
Несколько человек в течение <i>t</i> минут наблюдали за улиткой. Каждый наблюдал за ней ровно 1 минуту и заметил, что за эту минуту улитка проползла ровно 1 метр. Ни в один момент времени улитка не оставалась без наблюдения. Какой наименьший и какой наибольший путь могла она проползти за эти <i>t</i> минут?
В три сосуда налито по целому числу литров воды. В любой сосуд разрешено перелить столько воды, сколько в нём уже содержится, из любого другого сосуда. Докажите, что несколькими такими переливаниями можно освободить один из сосудов. (Сосуды достаточно велики: каждый может вместить всю воду.)
В таблице размером <i>m×n</i> записаны числа так, что для каждых двух строк и каждых двух столбцов сумма чисел в двух противоположных вершинах образуемого ими прямоугольника равна сумме чисел в двух других его вершинах. Часть чисел стёрли, но по оставшимся можно восстановить стёртые. Докажите, что осталось не меньше чем (<i>n + m</i> – 1) чисел.
Докажите, что если для чисел <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, <i>q</i><sub>1</sub> и <i>q</i><sub>2</sub> выполнено неравенство (<i>q</i><sub>1</sub> – <i>q</i><sub>2</sub>)² + (<i>p</i><sub>1</sub> – <i>p</i><sub>2</sub>)(<i>p</i><sub>1</sub><i>q</i><sub>2</sub> – <i>p</i><sub>2</sub><i>q</i><sub>1</sub>) < 0, то квадратные трёхчлены
<i>x</i>² + <i>p</i><sub>1</sub><i>x</i> + <i>q</i><sub>1</sub> и <i>x</i&...
Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек<i>A</i><nobr>и <i>B</i></nobr>существует такая<nobr>точка <i>С</i></nobr>этого множества, что треугольник<i>ABC</i>равносторонний. Сколько точек может содержать такое множество?
Сумма тангенсов углов величиной 1°, 5°, 9°, 13°, ..., 173°, 177°<nobr>равна 45.</nobr>Докажите это.
В трапеции<i>ABCD</i>с основаниями<nobr><i>AB</i> = <i>a</i></nobr>и<nobr><i>CD</i> = <i>b</i></nobr>проведён отрезок<i>A</i><sub>1</sub><i>B</i><sub>1</sub>, соединяющий середины диагоналей.<nobr>В полученной</nobr>трапеции проведён отрезок<i>A</i><sub>2</sub><i>B</i><sub>2</sub>, тоже соединяющий середины диагоналей, и так далее. Может ли в последовательности длин отрезков<i>AB</i>,<i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>A</i><sub>2</sub><i>B</i><sub>2</sub>,... какое-то число встретиться...
Докажите, что числа 1, 2, ..., <i>n</i> ни при каком <i>n</i> > 1 нельзя разбить на два множества так, чтобы произведение чисел одного из них равнялось произведению чисел другого.
а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это.<span class="prim">(Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)</span>б) Для любых двух <nobr>вершин <i>A</i></nobr> <nobr>и <i>B</i></nobr> любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника <nobr>из <i>А</i></nobr> <nobr>в <i>В</i></nobr> и никакие две не проходят по одному ребру. Докажите это. в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его <nobr>вершин <i>А</i></nobr> <nobr>и <i>В</i></nobr&g...
Пусть<i>l</i><sub>1</sub>,<i>l</i><sub>2</sub>, ...,<nobr><i>l</i><sub><i>n</i></sub> —</nobr>несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке<i>X</i><sub>1</sub>,<i>X</i><sub>2</sub>, ...,<i>X</i><sub><i>n</i></sub>так, чтобы перпендикуляр, восставленный к прямой<i>l</i><sub><i>k</i></sub>в точке<i>X</i><sub><i>k</i></sub>(для любого натурального<nobr><i>k</i> < <i>n</i>),</nobr>проходил через точку<i>X...
<img src="/storage/problem-media/73603/problem_73603_img_2.png" width="400" height="417" vspace="10" hspace="20" align="right">Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в<nobr>точке <i>О</i>,</nobr><nobr>прямой <i>l</i>,</nobr>проходящей через<nobr>точку <i>О</i></nobr>, и всевозможных касательных к окружностям,<nobr>параллельных <i>l</i>.</nobr>Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что...
<img align="RIGHT" src="/storage/problem-media/73602/problem_73602_img_2.gif">Ювелиру заказали золотое кольцо<nobr>шириной <i>h</i>,</nobr>имеющее форму тела, ограниченного поверхностью шара с<nobr>центром <i>О</i></nobr>и поверхностью цилиндра<nobr>радиусом <i>r</i>,</nobr>ось которого проходит через<nobr>точку <i>О</i>.</nobr>Мастер сделал такое колечко, но<nobr>выбрал <i>r</i></nobr>слишком маленьким. Сколько золота ему придётся добавить, если<i>r</i>нужно увеличить в<nobr><i>k</i> раз,</nobr>а<nobr>ширину <i>h</i></nobr>оставить прежней?
В квадрате со стороной 1 расположена фигура, расстояние между любыми двумя точками которой не равно 0, 001. Докажите, что площадь этой фигуры не превосходит: а) 0, 34; б) 0, 287.
Пусть <i>A</i> – основание перпендикуляра, опущенного из центра данной окружности на данную прямую <i>l</i>. На этой прямой взяты еще две точки <i>B</i> и <i>C</i> так, что
<i>AB = AC</i>. Через точки <i>B</i> и <i>C</i> проведены две произвольные секущие, из которых одна пересекает окружность в точках <i>P</i> и <i>Q</i>, вторая – в точках <i>M</i> и <i>N</i>. Пусть прямые <i>PM</i> и <i>QN</i> пересекают прямую <i>l</i> в точках <i>R</i> и <i>S</i>. Докажите, что <i>AR = AS</i>.