Олимпиадные задачи из источника «глава 10. Неравенства для элементов треугольника» для 3-8 класса - сложность 1-4 с решениями

Докажите, что треугольник <i>ABC</i>остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны.

Докажите, что треугольник<i>ABC</i>остроугольный тогда и только тогда, когда на его сторонах <i>BC</i>,<i>CA</i>и <i>AB</i>можно выбрать такие внутренние точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>, что <i>AA</i><sub>1</sub>=<i>BB</i><sub>1</sub>=<i>CC</i><sub>1</sub>.

Докажите, что треугольник остроугольный тогда и только тогда, когда <i>p</i>> 2<i>R</i>+<i>r</i>.

Докажите, что треугольник со сторонами <i>a</i>,<i>b</i>и <i>c</i>остроугольный тогда и только тогда, когда <i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>+<i>c</i><sup>2</sup>> 8<i>R</i><sup>2</sup>.

Пусть <i>h</i> — наибольшая высота нетупоугольного треугольника. Докажите, что <i>r</i>+<i>R</i>$\leq$<i>h</i>.

Пусть$\angle$<i>A</i><$\angle$<i>B</i><$\angle$<i>C</i>< 90<sup><tt>o</tt></sup>. Докажите, что центр вписанной окружности треугольника<i>ABC</i>лежит внутри треугольника<i>BOH</i>, где<i>O</i> — центр описанной окружности,<i>H</i> — точка пересечения высот.

В остроугольном треугольнике <i>ABC</i>проведены высоты <i>AA</i><sub>1</sub>,<i>BB</i><sub>1</sub>и <i>CC</i><sub>1</sub>. Докажите, что периметр треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>не превосходит половины периметра треугольника <i>ABC</i>.

Докажите, что если в остроугольном треугольнике <i>h</i><sub>a</sub>=<i>l</i><sub>b</sub>=<i>m</i><sub>c</sub>, то этот треугольник равносторонний.

Докажите, что если треугольник не тупоугольный, то <i>m</i><sub>a</sub>+<i>m</i><sub>b</sub>+<i>m</i><sub>c</sub>$\geq$4<i>R</i>.

Докажите, что для остроугольного треугольника<div align="CENTER"> $\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$. </div>

Докажите, что для остроугольного треугольника<div align="CENTER"> $\displaystyle {\frac{m_a}{h_a}}$ + $\displaystyle {\frac{m_b}{h_b}}$ + $\displaystyle {\frac{m_c}{h_c}}$ $\displaystyle \leq$ 1 + $\displaystyle {\frac{R}{r}}$. </div>

<i>ABC</i>- прямоугольный треугольник с прямым углом<i>C</i>. Докажите, что <i>m</i><sub>a</sub><sup>2</sup>+<i>m</i><sub>b</sub><sup>2</sup>> 29<i>r</i><sup>2</sup>.

<i>ABC</i>- прямоугольный треугольник с прямым углом<i>C</i>. Докажите, что <i>c</i>/<i>r</i>$\geq$2(1 +$\sqrt{2}$).

Докажите, что для прямоугольного треугольника0, 4 <<i>r</i>/<i>h</i>< 0, 5, где <i>h</i> — высота, опущенная из вершины прямого угла.

<i>ABC</i>- прямоугольный треугольник с прямым углом<i>C</i>. Докажите, что <i>a</i>+<i>b</i><<i>c</i>+<i>h</i><sub>c</sub>.

<i>ABC</i>- прямоугольный треугольник с прямым углом<i>C</i>. Докажите, что <i>c</i><sup>n</sup>><i>a</i><sup>n</sup>+<i>b</i><sup>n</sup>при <i>n</i>> 2.

Даны треугольник <i>ABC</i>со сторонами <i>a</i>><i>b</i>><i>c</i>и произвольная точка <i>O</i>внутри его. Пусть прямые <i>AO</i>,<i>BO</i>,<i>CO</i>пересекают стороны треугольника в точках <i>P</i>,<i>Q</i>,<i>R</i>. Докажите, что <i>OP</i>+<i>OQ</i>+<i>OR</i><<i>a</i>.

Внутри окружности расположен выпуклый пятиугольник. Докажите, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность.

В угол с вершиной <i>A</i> вписана окружность, касающаяся сторон угла в точках <i>B</i> и <i>C</i>. В области, ограниченной отрезками <i>AB, AC</i> и меньшей дугой <i>BC</i>, расположен отрезок. Докажите, что его длина не превышает <i>AB</i>.

Внутри сектора <i>AOB</i>круга радиуса <i>R</i>=<i>AO</i>=<i>BO</i>лежит отрезок <i>MN</i>. Докажите, что <i>MN</i>$\leq$<i>R</i>или <i>MN</i>$\leq$<i>AB</i>. (Предполагается, что $\angle$<i>AOB</i>< 180<sup><tt>o</tt></sup>.)

а) Внутри треугольника <i>ABC</i>расположен отрезок <i>MN</i>. Докажите, что длина <i>MN</i>не превосходит наибольшей стороны треугольника. б) Внутри выпуклого многоугольника расположен отрезок <i>MN</i>. Докажите, что длина <i>MN</i>не превосходит наибольшей стороны или наибольшей диагонали этого многоугольника.

Докажите, что:

  а)   <img align="MIDDLE" src="/storage/problem-media/57463/problem_57463_img_2.gif">   б)   <img align="MIDDLE" src="/storage/problem-media/57463/problem_57463_img_3.gif">

Докажите, что3$\left(\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right.$${\frac{a}{r_a}}$+${\frac{b}{r_b}}$+${\frac{c}{r_c}}$$\left.\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right)$$\geq$4$\left(\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right.$${\frac{r_a}{a}}$+${\frac{r_b}{b}}$+${\frac{r_c}{c}}$$\left.\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right)$.

Докажите, что сумма расстояний от любой точки внутри треугольника до его вершин не меньше 6<i>r</i>.

Пусть <i>O</i> — центр вписанной окружности треугольника <i>ABC</i>, причем <i>OA</i>$\geq$<i>OB</i>$\geq$<i>OC</i>. Докажите, что <i>OA</i>$\geq$2<i>r</i>и <i>OB</i>$\geq$<i>r</i>$\sqrt{2}$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка