Олимпиадные задачи из источника «Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки» для 5-9 класса - сложность 2-3 с решениями

На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он прыгает через какого-нибудь кузнечика (но не через двух сразу).

Докажите, что через 1985 секунд они не могут вернуться в исходное положение.

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.

Найти все пары целых чисел  (<i>x, y</i>),  удовлетворяющие уравнению   3·2<sup><i>x</i></sup> + 1 = <i>y</i>².

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.

Могут ли они вращаться?

Докажите, что выпуклый 13-угольник нельзя разрезать на параллелограммы.

Найти остаток от деления на 7 числа  10<sup>10</sup> + 10<sup>10<sup>2</sup></sup> + 10<sup>10<sup>3</sup></sup> + ... + 10<sup>10<sup>10</sup></sup>.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений),<nobr>а) проигрывает;</nobr><nobr>б) выигрывает.</nobr>Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?

Докажите, что если   <i>a</i><sub>1</sub> ≥ <i>a</i><sub>2</sub> ≥ ... ≥ <i>a<sub>n</sub></i>,   <i>b</i><sub>1</sub> ≥ <i>b</i><sub>2</sub> ≥ ... ≥ <i>b<sub>n</sub></i>,   то наибольшая из сумм вида   <i>a</i><sub>1</sub><i>b</i><sub><i>k</i><sub>1</sub></sub> + <i>a</i><sub>2</sub><i>b</i><sub><i>k</i><sub>2</sub></sub> + ... + <i>a<sub>n</sub>b<sub>k<sub>n</sub></sub></i>     (<i>k</i><sub>1</sub>, <i>k</i><sub>2&lt...

Докажите неравенство   (<i>a + b + c + d</i> + 1)² ≥ 4(<i>a</i>² + <i>b</i>² + <i>c</i>² + <i>d</i>²)  при  <i>a, b, c, d</i> ∈ [0, 1].

Докажите, что при любом простом  <i>p</i>   <img align="middle" src="/storage/problem-media/60750/problem_60750_img_2.gif">   делится на <i>p</i>.

Пусть <i>n</i> – натуральное число, не кратное 17. Докажите, что либо  <i>n</i><sup>8</sup> + 1,  либо  <i>n</i><sup>8</sup> – 1  делится на 17.

Докажите тождества:   а)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_2.gif">   б)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_3.gif">   в)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_4.gif">   г)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_5.gif">   д)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_6.gif">(Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что   <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_7.gif">   – это количест...

Сколько существует девятизначных чисел, сумма цифр которых чётна?

  а) Каких чисел больше среди целых чисел первой тысячи (включая и 1000): в записи которых есть единица, или остальных?   б) Каких семизначных чисел больше: тех, в записи которых есть единица, или остальных?

Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.

Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?

В таблице 25×25 расставлены целые числа так, что в каждом столбце и в каждой строчке встречаются все числа от 1 до 25. При этом таблица симметрична относительно главной диагонали. Доказать, что на главной диагонали все числа от 1 до 25 встречаются по одному разу.

Докажите, что если  <i>x + y + z ≥ xyz</i>,  то  <i>x</i>² + <i>y</i>² + <i>z</i>² ≥ <i>xyz</i>.

Докажите, что три неравенства  <img align="MIDDLE" src="/storage/problem-media/30927/problem_30927_img_2.gif">  не могут быть все верны одновременно, если числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,<i>a</i><sub>3</sub>,<i>b</i><sub>1</sub>,<i>b</i><sub>2</sub>,<i>b</i><sub>3</sub>положительны.

<i>a, b, c, d</i> – положительные числа. Докажите, что по крайней мере одно из неравенств

  1)  <i>a + b < c + d</i>;

  2)  (<i>a + b</i>)<i>cd < ab</i>(<i>c + d</i>);

  3)  (<i>a + b</i>)(<i>c + d</i>) < <i>ab + cd</i>

неверно.

<i>x, y</i> > 0.  Через <i>S</i> обозначим наименьшее из чисел <i>x</i>, <sup>1</sup>/<sub><i>y</i></sub>,  <i>y</i> + <sup>1</sup>/<sub><i>x</i></sub>.  Какое максимальное значение может принимать величина <i>S</i>?

Докажите, что для любого <i>x</i> выполнено неравенство  <i>x</i><sup>4</sup> – <i>x</i>³ + 3<i>x</i>² – 2<i>x</i> + 2 ≥ 0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка