Олимпиадные задачи по теме «Методы математического анализа» для 11 класса - сложность 3-5 с решениями

Дана пирамида <i>SA</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, основание которой – выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. Для каждого  <i>i</i> = 1, 2, ..., <i>n</i>  в плоскости основания построили треугольник <i>X<sub>i</sub>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>, равный треугольнику <i>SA<sub>i</sub>A</i><sub><i>i</i>+1</sub> и лежащий по ту же сторону от прямой <i>A<sub>i</sub>A</i><sub><i>i</i>+1</sub&gt...

Существует ли выпуклый <i>N</i>-угольник, все стороны которого равны, а все вершины лежат на параболе  <i>y = x</i>²,  если

  а)  <i>N</i> = 2011;

  б)  <i>N</i> = 2012?

В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.

Oснованием пирамиды служит выпуклый четырехугольник. Oбязательно ли существует сечение этой пирамиды, не пересекающее основание и являющееся вписанным четырехугольником?

На плоскости даны три параллельные прямые.

Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.

Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру.

Многочлен <i>P</i>(<i>x</i>) с действительными коэффициентами таков, что уравнение  <i>P</i>(<i>m</i>) + <i>P</i>(<i>n</i>) = 0  имеет бесконечно много решений в целых числах <i>m</i> и <i>n</i>.

Докажите, что у графика  <i>y = P</i>(<i>x</i>)  есть центр симметрии.

Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

В бесконечной последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... число <i>a</i><sub>1</sub> равно 1, а каждое следующее число <i>a<sub>n</sub></i> строится из предыдущего <i>a</i><sub><i>n</i>–1</sub> по правилу: если у числа <i>n</i> наибольший нечётный делитель имеет остаток 1 от деления на 4, то  <i>a<sub>n</sub> = a</i><sub><i>n</i>–1</sub> + 1,  если же остаток равен 3, то  <i>a<sub>n</sub> = a</i><sub><i>n</i>–1</sub> – 1.  Докажите, что в этой последовательности

  а) число 1 встреч...

При каких натуральных<i> n </i>для любых чисел<i> α </i>,<i> β </i>,<i> γ </i>, являющихся величинами углов остроугольного треугольника, справедливо неравенство <center><i>

sin nα + sin nβ + sin nγ<</i>0<i>? </i></center>

На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.

В последовательности натуральных чисел {<i>a<sub>n</sub></i>},  <i>n</i> = 1, 2, ...,  каждое натуральное число встречается хотя бы один раз, и для любых различных <i>n</i> и <i>m</i> выполнено неравенство   <img align="absmiddle" src="/storage/problem-media/109941/problem_109941_img_2.gif">   Докажите, что тогда  |<i>a<sub>n</sub> – n</i>| < 2000000  для всех натуральных <i>n</i>.

Докажите, что если <center><i> <img src="/storage/problem-media/109920/problem_109920_img_2.gif">+<img src="/storage/problem-media/109920/problem_109920_img_3.gif">+<img src="/storage/problem-media/109920/problem_109920_img_4.gif">=<img src="/storage/problem-media/109920/problem_109920_img_5.gif">+<img src="/storage/problem-media/109920/problem_109920_img_6.gif">+<img src="/storage/problem-media/109920/problem_109920_img_7.gif">=

<img src="/storage/problem-media/109920/problem_109920_img_8.gif">+<img src="/storage/problem-media/109920/problem_109920_img_9.gif">+<img src="/storage/problem-media/109920/problem_109920_img_10.gif">

<...

Назовем медианой системы 2<i> n </i>точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2<i> n </i>точек, никакие три из которых не лежат на одной прямой?

Докажите, что<i> sin<img src="/storage/problem-media/109838/problem_109838_img_2.gif"><<img src="/storage/problem-media/109838/problem_109838_img_3.gif"> </i>при0<i><x<<img src="/storage/problem-media/109838/problem_109838_img_4.gif"> </i>.

Какое наибольшее конечное число корней может иметь уравнение <center><i>

|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,

</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?

Пусть<i> M={x<sub>1</sub>, .., x</i>30<i>} </i>– множество, состоящее из 30 различных положительных чисел;<i> A<sub>n</sub> </i>(1<i><img src="/storage/problem-media/109798/problem_109798_img_2.gif"> n<img src="/storage/problem-media/109798/problem_109798_img_2.gif"> </i>30) – сумма всевозможных произведений различных<i> n </i>элементов множества<i> M </i>. Докажите, что если<i> A</i>15<i>>A</i>10, то<i> A<sub>1</sub>></i>1.

Пусть<i> α </i>,<i> β </i>,<i> γ </i>,<i> τ </i>– такие положительные числа, что при всех<i> x </i> <center><i>

sinα x+ sinβ x= sinγ x+ sinτ x.

</i></center> Докажите, что<i> α=γ </i>или<i> α=τ </i>.

Докажите, что для любого натурального числа  <i>n</i> > 10000  найдётся такое натуральное число <i>m</i>, представимое в виде суммы двух квадратов, что

 0 < <i>m – n</i> < 3 <img align="absmiddle" src="/storage/problem-media/109761/problem_109761_img_2.gif"> .

Многочлен  <i>P</i>(<i>x</i>) = <i>x</i>³ + <i>ax</i>² + <i>bx + c</i>  имеет три различных действительных корня, а многочлен <i>P</i>(<i>Q</i>(<i>x</i>)), где  <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>x</i> + 2001,  действительных корней не имеет. Докажите, что  <i>P</i>(2001) > <sup>1</sup>/<sub>64</sub>.

Пусть  –1 < <i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < ... < <i>x<sub>n</sub></i> < 1  и   <img align="absmiddle" src="/storage/problem-media/109716/problem_109716_img_2.gif">

Докажите, что если  <i>y</i><sub>1</sub> < <i>y</i><sub>2</sub> < ... < <i>y<sub>n</sub></i>,  то   <img align="absmiddle" src="/storage/problem-media/109716/problem_109716_img_3.gif">

Найдите все бесконечные ограниченные последовательности натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., для всех членов которых, начиная с третьего, выполнено <div align="center"><img src="/storage/problem-media/109692/problem_109692_img_2.gif"></div>

Докажите, что если(<i>x+<img src="/storage/problem-media/109565/problem_109565_img_2.gif"></i>)(<i>y+<img src="/storage/problem-media/109565/problem_109565_img_3.gif"></i>)<i>=</i>1, то<i> x+y=</i>0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка