Олимпиадные задачи по теме «Модуль числа» для 2-11 класса
Модуль числа
НазадПо кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.
Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.
Квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что <i>f</i> '(<i>x</i>)<i>g</i>'(<i>x</i>) ≥ |<i>f</i>(<i>x</i>)| + |<i>g</i>(<i>x</i>)| при всех действительных <i>x</i>.
Докажите, что произведение <i>f</i>(<i>x</i>)<i>g</i>(<i>x</i>) равно квадрату некоторого трёхчлена.
Даны числа<i>а</i><sub>1</sub>, ...,<i>а<sub>n</sub></i>. Для 1 ≤<i>i</i>≤<i>n</i>положим
<center>
<i>d<sub>i</sub></i> = MAX { <i>a<sub>j</sub></i> | 1 ≤ <i>j</i> ≤ <i>i</i> } - MIN { <i>a<sub>j</sub></i> | <i>i</i> ≤ <i>j</i> ≤ <i>n</i> }
<i>d</i> = MAX { <i>d<sup>i</sup></i> | 1 ≤ <i>i</i> ≤ <i>n</i> } </center> а) Доказать, что для любых<i>x</i><sub>1</sub>≤<i>x</i><sub>2</sub>≤ ... ≤<i>x</i><sub>n</sub>выполняется неравенство
<center&g...
Положительные числа <i>x, y, z</i> таковы, что модуль разности любых двух из них меньше 2.
Докажите, что  <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_2.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_3.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_4.gif"> > <i>x + y + z</i>.
В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Пусть <i>a, b, c, d, e</i> и <i>f</i> – некоторые числа, причём <i>ace</i> ≠ 0. Известно, что значения выражений |<i>ax + b</i>| + |<i>cx + d</i>| и |<i>ex + f</i> | равны при всех значениях <i>x</i>.
Докажите, что <i>ad = bc</i>.
Существует ли функция<i> f</i>(<i>x</i>), определенная при всех<i> x<img src="/storage/problem-media/110035/problem_110035_img_2.gif"><img src="/storage/problem-media/110035/problem_110035_img_3.gif"> </i>и для всех<i> x,y<img src="/storage/problem-media/110035/problem_110035_img_2.gif"><img src="/storage/problem-media/110035/problem_110035_img_3.gif"> </i>удовлетворяющая неравенству <center><i>
|f</i>(<i>x+y</i>)<i>+ sin x+ sin y|<</i>2<i>? </i></center>
Существуют ли действительные числа<i> a </i>,<i> b </i>и<i> c </i>такие, что при всех действительных<i> x </i>и<i> y </i>выполняется неравенство <center><i>
|x+a|+|x+y+b|+|y+c|>|x|+|x+y|+|y|? </i></center>
Дана функция<i> f</i>(<i>x</i>)<i> = | </i>4<i> - </i>4<i>|x|| - </i>2. Сколько решений имеет уравнение<i> f</i>(<i>f</i>(<i>x</i>))<i> = x </i>?
Какое наибольшее конечное число корней может иметь уравнение <center><i>
|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,
</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?
Даны три приведённых квадратных трехчлена: <i>P</i><sub>1</sub>(<i>x</i>), <i>P</i><sub>2</sub>(<i>x</i>) и <i>P</i><sub>3</sub>(<i>x</i>). Докажите, что уравнение |<i>P</i><sub>1</sub>(<i>x</i>)| + |<i>P</i><sub>2</sub>(<i>x</i>)| = |<i>P</i><sub>3</sub>(<i>x</i>)| имеет не более восьми корней.
На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или<i> - </i>, второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать?
Доказать, что выражение <center><i>
<img src="/storage/problem-media/108970/problem_108970_img_2.gif">+<img src="/storage/problem-media/108970/problem_108970_img_3.gif">
</i></center> равно 2, если<i> 1<= a <= 2 </i>, и равно<i> 2<img src="/storage/problem-media/108970/problem_108970_img_4.gif"> </i>, если<i> a>2 </i>.
Докажите, что если для чисел<i>a</i>,<i>b</i>и<i>c</i>выполняются неравенства|<i>a</i>-<i>b</i>|$\ge$|<i>c</i>|,|<i>b</i>-<i>c</i>|$\ge$|<i>a</i>|,|<i>c</i>-<i>a</i>|$\ge$|<i>b</i>|, то одно из этих чисел равно сумме двух других.
Докажите, что<div align="CENTER"> | <i>x</i>| + | <i>y</i>| + | <i>z</i>|$\displaystyle \le$| <i>x</i> + <i>y</i> - <i>z</i>| + | <i>x</i> - <i>y</i> + <i>z</i>| + |-<i>x</i> + <i>y</i> + <i>z</i>|, </div>где<i>x</i>,<i>y</i>,<i>z</i> — действительные числа.
Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями: <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|, причём 0 ≤ <i>x</i><sub>1</sub> ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.
Решите уравнение: |<i>x</i>- 2005| + |2005 -<i>x</i>| = 2006.
<b>Постройте график.</b>Постройте график функции<var>y</var>= 3<var>x</var>+ |5<var>x</var>− 10|.
За круглым столом сидят десять человек, перед каждым – несколько орехов. Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.
{<i>a<sub>n</sub></i>} – последовательность чисел между 0 и 1, в которой следом за <i>x</i> идёт 1 – |1 – 2<i>x</i>|.
а) Докажите, что если <i>a</i><sub>1</sub> рационально, то последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то <i>a</i><sub>1</sub> рационально.
Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями: <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|, причём 0 ≤ <i>x</i><sub>1</sub> ≤ 1.
а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.
б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?
По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
равна 1. Найти эти числа.
На окружности записаны шесть чисел: каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке.
Сумма всех чисел равна 1. Найти эти числа.
На координатной плоскости изобразите все точки, координаты которых являются решениями уравнения: <i>y</i>² – |<i>y</i>| = <i>x</i>² – |<i>x</i>|.