Олимпиадные задачи по теме «Многочлены» - сложность 4 с решениями
Многочлены
НазадНа координатной плоскости нарисовано <i>n</i> парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более 2(<i>n</i> – 1) углов (то есть точек пересечения пары парабол).
Изначально на доске были написаны одночленs 1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>. Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены <i>S</i><sub>1</sub> = 1 + <i>x, S</i><sub>2</sub> = 1 + <i>x + x</i>², <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>, ..., <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>. Докажите...
Существуют ли такие ненулевые числа <i>a, b, c</i>, что при любом <i>n</i> > 3 можно найти многочлен вида <i>P<sub>n</sub></i>(<i>x</i>) = <i>x<sup>n</sup> + ... + ax</i>² + <i>bx + c</i>, имеющий ровно <i>n</i> (не обязательно различных) целых корней?
Многочлен <i>P</i>(<i>x</i>) с действительными коэффициентами таков, что уравнение <i>P</i>(<i>m</i>) + <i>P</i>(<i>n</i>) = 0 имеет бесконечно много решений в целых числах <i>m</i> и <i>n</i>.
Докажите, что у графика <i>y = P</i>(<i>x</i>) есть центр симметрии.
<i>k</i> ≥ 6 – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в <i>k</i> целых точках значения среди чисел от 1 до <i>k</i> – 1, то эти значения равны.
Пусть <i>p</i> – простое число. Докажите, что при некотором простом <i>q</i> все числа вида <i>n<sup>p</sup> – p</i> не делятся на <i>q</i>.
Докажите, что если натуральное число <i>N</i> представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
На оси <i>Ox</i> произвольно расположены различные точки <i>X</i><sub>1</sub>, ..., <i>X<sub>n</sub></i>, <i>n</i> ≥ 3. Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось <i>Ox</i> в данных точках (и не пересекающие ееё в других точках). Пусть <i>y = f</i><sub>1</sub>(<i>x</i>), ..., <i>y = f<sub>m</sub></i>(<i>x</i>) – соответствующие параболы. Докажите, что парабола <i>y = f</i><sub>1</sub>(<i>x</i>) + ... + <i>f<sub>m</sub></i>(<i>x</i>) пересекает ось <i>Ox</i> в двух точках.
Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.
Сколькими способами числа 2<sup>0</sup>, 2<sup>1</sup>, 2², ..., 2<sup>2005</sup> можно разбить на два непустых множества <i>A</i> и <i>B</i> так, чтобы уравнение <i>x</i>² – <i>S</i>(<i>A</i>)<i>x + S</i>(<i>B</i>) = 0, где <i>S</i>(<i>M</i>) – сумма чисел множества <i>M</i>, имело целый корень?
Натуральные числа <i>x</i> и <i>y</i> таковы, что 2<i>x</i>² – 1 = <i>y</i><sup>15</sup>. Докажите, что если <i>x</i> > 1, то <i>x</i> делится на 5.
Даны многочлены <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>). Известно, что для некоторого многочлена <i>R</i>(<i>x, y</i>) выполняется равенство <i>P</i>(<i>x</i>) – <i>P</i>(<i>y</i>) = <i>R</i>(<i>x, y</i>)(<i>Q</i>(<i>x</i>) – <i>Q</i>(<i>y</i>)).
Докажите, что существует такой многочлен <i>S</i>(<i>x</i>), что <i>P</i>(<i>x</i>) = <i>S</i>(<i>Q</i>(<i>x</i>)).
Длины сторон треугольника являются корнями кубического уравнения с рациональными коэффициентами.
Докажите, что длины высот треугольника являются корнями уравнения шестой степени с рациональными коэффициентами.
Даны многочлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) с целыми неотрицательными коэффициентами, <i>m</i> – наибольший коэффициент многочлена <i>f</i>. Известно, что для некоторых натуральных чисел <i>a < b</i> имеют место равенства <i>f</i>(<i>a</i>) = <i>g</i>(<i>a</i>) и <i>f</i>(<i>b</i>) = <i>g</i>(<i>b</i>). Докажите, что если <i>b > m</i>, то многочлены <i>f</i> и <i>g</i> совпадают.
Два многочлена <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i> и <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>px + q</i> принимают отрицательные значения на некотором интервале <i>I</i> длины более 2, а вне <i>I</i> – неотрицательны. Докажите, что найдётся такая точка <i>x</i><sub>0</sub>, что <i>P</i>(<i>x</i><sub>0</sub>) < <i>Q</i>(<i>x</i><sub>0</sub>).
Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида <i>x</i>² + <i>px + q</i>, среди коэффициентов <i>p</i> и <i>q</i> которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?
Докажите, что если числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> отличны от нуля и для любого целого <i>k</i> = 0, 1, ..., <i>n</i> (<i>n < m</i> – 1) выполняется равенство:
<i>a</i><sub>1</sub> + <i>a</i><sub>2</sub>·2<sup><i>k</i></sup> + <i>a</i><sub>3</sub>·3<sup><i>k</i></sup> + ... + <i>a<sub>m</sub>m<sup>k</sup></i> = 0, то в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> ...
Существует ли такое конечное множество <i>M</i> ненулевых действительных чисел, что для любого натурального <i>n</i> найдется многочлен степени не меньше <i>n</i> с коэффициентами из множества <i>M</i>, все корни которого действительны и также принадлежат <i>M</i>?
Известно, что <i>f</i>(<i>x</i>), <i>g</i>(<i>x</i>) и <i>h</i>(<i>x</i>) – квадратные трёхчлены. Может ли уравнение <i>f</i>(<i>g</i>(<i>h</i>(<i>x</i>))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?
Даны непостоянные многочлены <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>), у которых старшие коэффициенты равны 1.
Докажите, что сумма квадратов коэффициентов многочлена <i>P</i>(<i>x</i>)<i>Q</i>(<i>x</i>) не меньше суммы квадратов свободных членов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>).
Докажите, что для любого натурального числа <i>a</i><sub>1</sub> > 1 существует такая возрастающая последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...,
что <img align="absmiddle" src="/storage/problem-media/109599/problem_109599_img_2.gif"> делится на <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>k</sub></i> при всех <i>k</i> ≥ 1.
Положительные числа <i>х</i><sub>1</sub>, ..., <i>х<sub>k</sub></i> удовлетворяют неравенствам <img align="absmiddle" src="/storage/problem-media/109199/problem_109199_img_2.gif">
а) Докажите, что <i>k</i> > 50.
б) Построить пример таких чисел для какого-нибудь <i>k</i>.
в) Найти минимальное <i>k</i>, для которого пример возможен.
На доске написаны три функции: <i>f</i><sub>1</sub>(<i>x</i>) = <i>x</i> + <sup>1</sup>/<sub><i>x</i></sub>, <i>f</i><sub>2</sub>(<i>x</i>) = <i>x</i>², <i>f</i><sub>3</sub>(<i>x</i>) = (<i>x</i> – 1)². Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию <sup>1</sup>/<sub><i>x</i></sub>.
Докажите, что если стереть с доски любую из функций <i>f</i&...
Доказать, что существует бесконечно много таких составных <i>n</i>, что 3<sup><i>n</i>–1</sup> – 2<sup><i>n</i>–1</sup> кратно <i>n</i>.
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?