Олимпиадные задачи по математике для 10 класса - сложность 3-4 с решениями
Точку внутри треугольника назовём <i>хорошей</i>, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.
Через вершины <i>A, B, C</i> треугольника <i>ABC</i> проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Точки <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub> симметричны точкам <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> относительно сторон <i>BC, CA, AB</i> соответственно. Докажите, что прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub>,...
Внутри окружности с центром <i>O</i> отмечены точки <i>A</i> и <i>B</i> так, что <i>OA = OB</i>.
Постройте на окружности точку <i>M</i>, для которой сумма расстояний до точек <i>A</i> и <i>B</i> наименьшая среди всех возможных.
Дан остроугольный треугольник <i>ABC</i>. Для произвольной прямой <i>l</i> обозначим через <i>l<sub>a</sub></i>, <i>l<sub>b</sub></i>, <i>l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно сторон треугольника, а через <i>I<sub>l</sub></i> – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек <i>I<sub>l</sub></i>.
Дан треугольник <i>ABC</i>. Прямая <i>l</i> касается вписанной в него окружности. Обозначим через <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику <i>ABC</i>.
Даны треугольник <i>ABC</i> и произвольная точка <i>P, A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> – вторые точки пересечения прямых <i>AP, BP</i> и <i>CP</i> с описанной окружностью треугольника <i>ABC, A</i><sub>2</sub>, <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub> – точки, симметричные <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> относительно прямых <i>BC</i>, <i>CA</i> и <i>AB</i> соответственно. Докажите, что треугольники <i>A</i><sub>1</sub...
В треугольнике <i>ABC</i> <i>M</i> – точка пересечения медиан, <i>O</i> – центр вписанной окружности, <i>A'</i>, <i>B'</i>, <i>C'</i> – точки ее касания со сторонами <i>BC</i>, <i>CA</i>, <i>AB</i> соответственно. Докажите, что, если <i>CA' </i>= <i>AB</i>, то прямые <i>OM</i> и <i>AB</i> перпендикулярны.
Дана окружность и точка <i>P</i> внутри неё. Два произвольных перпендикулярных луча с началом в точке <i>P</i> пересекают окружность в точках <i>A</i> и <i>B</i>. Tочка <i>X</i> является проекцией точки <i>P</i> на прямую <i>AB</i>, <i>Y</i> – точка пересечения касательных к окружности, проведённых через точки <i>A</i> и <i>B</i>. Докажите, что все прямые <i>XY</i> проходят через одну и ту же точку.
B основании четырёхугольной пирамиды <i>SABCD</i> лежит четырёхугольник <i>ABCD</i>, диагонали которого перпендикулярны и пересекаются в точке <i>P</i>, и <i>SP</i> является высотой пирамиды. Докажите, что проекции точки <i>P</i> на боковые грани пирамиды лежат на одной окружности.
Дан треугольник <i>ABC</i> и точки <i>P</i> и <i>Q</i>. Известно, что треугольники, образованные проекциями <i>P</i> и <i>Q</i> на стороны <i>ABC</i>, подобны (соответствуют друг другу вершины, лежащие на одних и тех же сторонах исходного треугольника). Докажите, что прямая <i>PQ</i> проходит через центр описанной окружности треугольника <i>ABC</i>.
Дан вписанный четырёхугольник <i>ABCD</i>. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри, равны. Верно ли, что <i>ABCD</i> – квадрат?
Постройте четырёхугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.
Дан треугольник <i>ABC</i> и точки <i>X, Y</i>, не лежащие на его описанной окружности Ω. Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – проекции <i>X</i> на <i>BC, CA, AB</i>, а <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub> – проекции <i>Y</i>. Докажите, что перпендикуляры, опущенные из <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> на, соответственно, <i>B</i><sub>2</sub><i>C</i><sub>2</sub>, <i>C</...
Три прямые проходят через точку <i>O</i> и образуют попарно равные углы. На одной из них взяты точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, на другой – <i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, так что точка <i>C</i><sub>1</sub> пересечения прямых <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>A</i><sub>2</sub><i>B</i><sub>2</sub> лежит на третьей прямой. Пусть <i>C</i><sub>2</sub> – точка пересечения <i>A</i><sub>1</sub><i>B</i><sub>2</sub> и <i>A</i><sub>2</sub>&l...
В треугольнике <i>ABC</i> отметили центр вписанной окружности, основание высоты, опущенной на сторону <i>AB</i>, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.
В треугольнике <i>ABC M</i> – точка пересечения медиан, <i>I</i> – центр вписанной окружности, <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub> – точки касания этой окружности со сторонами <i>BC</i> и <i>AC, G</i> – точка пересечения прямых <i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub>. Докажите, что угол <i>CGI</i> прямой тогда и только тогда, когда <i>GM || AB</i>.
Радиусы описанной и вписанной окружностей треугольника <i>ABC</i> равны <i>R</i> и <i>r</i>; <i>O, I</i> – центры этих окружностей. Внешняя биссектриса угла <i>C</i> пересекает прямую <i>AB</i> в точке <i>P</i>. Точка <i>Q</i> – проекция точки <i>P</i> на прямую <i>OI</i>. Найдите расстояние <i>OQ</i>.
В трапеции <i>ABCD</i> с основаниями <i>AD</i> и <i>BC</i> <i>P</i> и <i>Q</i> – середины диагоналей <i>AC</i> и <i>BD</i> соответственно. Докажите, что если ∠<i>DAQ</i> = ∠<i>CAB</i>, то ∠<i>PBA</i> = ∠<i>DBC</i>.
На стороне <i>AB</i> треугольника <i>ABC</i> взяты такие точки <i>X</i>, <i>Y</i>, что <i>AX = BY</i>. Прямые <i>CX</i> и <i>CY</i> вторично пересекают описанную окружность треугольника в точках <i>U</i> и <i>V</i>. Докажите, что все прямые <i>UV</i> проходят через одну точку.
Дан прямоугольник <i>ABCD</i> и точка <i>P</i>. Прямые, проходящие через <i>A</i> и <i>B</i> и перпендикулярные, соответственно, <i>PC</i> и <i>PD</i>, пересекаются в точке <i>Q</i>.
Докажите, что <i>PQ</i> ⊥ <i>AB</i>.
Найдите геометрическое место центров правильных треугольников, стороны которых проходят через три заданные точки <i>A, B, C</i> (то есть на каждой стороне или ее продолжении лежит ровно одна из заданных точек).
Два выпуклых четырёхугольника таковы, что стороны каждого лежат на серединных перпендикулярах к сторонам другого. Найдите их углы.
Три окружности проходят через точку <i>P</i>, а вторые точки их пересечения <i>A, B, C</i> лежат на одной прямой. <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – вторые точки пересечения прямых <i>AP, BP, CP</i> с соответствующими окружностями. <i>C</i><sub>2</sub> – точка пересечения прямых <i>AB</i><sub>1</sub> и <i>BA</i><sub>1</sub>. <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> определяются аналогично.
Докажите, что треугольники <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub...
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.
Стороны<i> BC </i>и<i> AC </i>треугольника<i> ABC </i>касаются соответствующих вневписанных окружностей в точках<i> A<sub>1</sub> </i>,<i> B<sub>1</sub> </i>. Пусть<i> A<sub>2</sub> </i>,<i> B<sub>2</sub> </i>— ортоцентры треугольников<i> CAA<sub>1</sub> </i>и<i> CBB<sub>1</sub> </i>. Докажите, что прямая<i> A<sub>2</sub>B<sub>2</sub> </i>перпендикулярна биссектрисе угла<i> C </i>.