Олимпиадные задачи из источника «Всероссийская олимпиада по математике» - сложность 4-5 с решениями

Для натурального <i>n</i> обозначим  <i>S<sub>n</sub></i> = 1! + 2! + ... + <i>n</i>!.  Докажите, что при некотором <i>n</i> у числа <i>S<sub>n</sub></i> есть простой делитель, больший 10<sup>2012</sup>.

Точка <i>E</i> – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника <i>ABC</i> с его вершиной <i>A</i>. Вписанная окружность этого треугольника касается сторон <i>AB</i> и <i>AC</i> в точках <i>C'</i> и <i>B'</i> соответственно. Докажите, что точка <i>F</i>, симметричная точке <i>E</i> относительно прямой <i>B'C'</i>, лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника <i>ABC</i>.

На координатной плоскости нарисовано <i>n</i> парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более  2(<i>n</i> – 1)  углов (то есть точек пересечения пары парабол).

Изначально на доске были написаны одночленs  1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>.  Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены  <i>S</i><sub>1</sub> = 1 + <i>x,  S</i><sub>2</sub> = 1 + <i>x + x</i>²,  <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>,  ...,  <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>.  Докажите...

Дан неравнобедренный треугольник <i>ABC</i>. Пусть <i>N</i> – середина дуги <i>BAC</i> его описанной окружности, а <i>M</i> – середина стороны <i>BC</i>. Обозначим через <i>I</i><sub>1</sub> и <i>I</i><sub>2</sub> центры вписанных окружностей треугольников <i>ABM</i> и <i>ACM</i> соответственно. Докажите, что точки <i>I</i><sub>1</sub>, <i>I</i><sub>2</sub>, <i>A</i>, <i>N</i> лежат на одной окружности.

По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.

Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.

Назовём компанию <i>k-неразбиваемой</i>, если при любом разбиении её на <i>k</i> групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.

В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку <i>красивой</i>, если в соседних с ней по стороне клетках стоит чётное число фишек.

Может ли ровно одна клетка доски быть красивой?

Треугольники <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>, равный треугольнику <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> и такой, что прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub> и <i>CC</i><sub>2</sub> будут параллельны?

Окружность с центром <i> I </i>касается сторон <i> AB </i>,<i> BC </i>,<i> AC </i>неравнобедренного треугольника <i> ABC </i>в точках<i> C<sub>1</sub> </i>,<i> A<sub>1</sub> </i>,<i> B<sub>1</sub> </i>соответственно. Окружности <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>вписаны в четырехугольники <i> BA<sub>1</sub>IC<sub>1</sub> </i>и <i> CA<sub>1</sub>IB<sub>1</sub> </i>соответственно. Докажите, что общая внутренняя касательная к <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>, отличная от ...

  В королевстве <i>N</i> городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются <i>соседними</i>). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.

  Однажды Король провел такую реформу: каждый из <i>N</i> мэров городов стал снова мэром одного из <i>N</i> городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара сос...

По кругу стоят2009целых неотрицательных чисел, не превышающих 100. Разрешается прибавить по1к двум соседним числам, причем с любыми двумя соседними числами эту операцию можно проделать не более<i> k </i> раз. При каком наименьшем<i> k </i>все числа гарантированно можно сделать равными?

На сторонах<i> AB </i>и<i> BC </i>параллелограмма<i> ABCD </i>выбраны точки<i> A<sub>1</sub> </i>и<i> C<sub>1</sub> </i>соответственно. Отрезки<i> AC<sub>1</sub> </i>и<i> CA<sub>1</sub> </i>пересекаются в точке<i> P </i>. Описанные окружности треугольников <i> AA<sub>1</sub>P </i>и<i> CC<sub>1</sub>P </i>вторично пересекаются в точке<i> Q </i>, лежащей внутри треугольника <i> ACD </i>. Докажите, что<i> <img align="absmiddle" src="/storage/problem-media/115402/problem_115402_img_2.gif"> PDA=<img align="absmiddle" src="/storage/...

На плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

В треугольной пирамиде <i> ABCD </i>все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках <i> ABC </i>,<i> ABD </i>,<i> ACD </i>лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер <i> AB </i>,<i> AC </i>,<i> AD </i>.

Последовательность<i> a<sub>1</sub>,a<sub>2</sub>,.. </i>такова, что<i> a<sub>1</sub><img align="absmiddle" src="/storage/problem-media/115397/problem_115397_img_2.gif"></i>(1<i>,</i>2)и<i> a<sub>k+</sub></i>1<i>=a<sub>k</sub>+<img align="absmiddle" src="/storage/problem-media/115397/problem_115397_img_3.gif"> </i>при любом натуральном <i> k </i>. Докажите, что в ней не может существовать более одной пары членов с целой суммой.

В треугольнике<i> ABC </i>угол<i> A </i>равен60<i><sup>o</sup> </i>. Пусть<i> BB<sub>1</sub> </i>и<i> CC<sub>1</sub> </i> — биссектрисы этого треугольника. Докажите, что точка, симметричная вершине A относительно прямой<i> B<sub>1</sub>C<sub>1</sub> </i>, лежит на стороне<i> BC </i>.

В нашем распоряжении имеются 3<sup>2<i>k</i></sup>неотличимых по виду монет, одна из которых фальшивая– она весит чуть легче настоящей. Кроме того, у нас есть трое двухчашечных весов. Известно, что двое весов исправны, а одни– сломаны (показываемый ими исход взвешивания никак не связан с весом положенных на них монет, т.е. может быть как верным, так и искаженным в любую сторону, причем на разных взвешиваниях– искаженным по-разному). При этом неизвестно, какие именно весы исправны, а какие сломаны. Как определить фальшивую монету за 3<i>k + </i>1 взвешиваний?

В НИИЧАВО работают несколько научных сотрудников. В течение 8-часового рабочего дня сотрудники ходили в буфет, возможно по нескольку раз. Известно, что для каждых двух сотрудников суммарное время, в течение которого в буфете находился ровно один из них, оказалось не менее <i>x</i> часов  (<i>x</i> > 4).  Какое наибольшее количество научных сотрудников могло работать в этот день в НИИЧАВО (в зависимости от <i>x</i>)?

На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.

Последовательности(<i>a<sub>n</sub></i>)и(<i>b<sub>n</sub></i>)заданы условиями<i> a<sub>1</sub>=</i>1,<i> b<sub>1</sub>=</i>2,<i> a<sub>n+</sub></i>1<i>=<img src="/storage/problem-media/111872/problem_111872_img_2.gif"> </i>и<i> b<sub>n+</sub></i>1<i>=<img src="/storage/problem-media/111872/problem_111872_img_3.gif"> </i>. Докажите, что<i> a</i>2008<i><</i>5.

В блицтурнире принимали участие  2<i>n</i> + 3  шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее <i>n</i> игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.

Дан выпуклый четырёхугольник<i> ABCD </i>. Пусть<i> P </i>и<i> Q </i>– точки пересечения лучей<i> BA </i>и<i> CD </i>,<i> BC </i>и<i> AD </i>соответственно, а<i> H </i>– проекция<i> D </i>на<i> PQ </i>. Докажите, что четырёхугольник<i> ABCD </i>является описанным тогда и только тогда, когда вписанные окружности треугольников<i> ADP </i>и<i> CDQ </i>видны из точки<i> H </i>под равными углами.

Фокусник отгадывает площадь выпуклого 2008-угольника<i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>2008</sub>, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка