Олимпиадные задачи из источника «Всероссийская олимпиада по математике» для 7 класса

В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?

Можно ли при каком-то натуральном<i> k </i>разбить все натуральные числа от 1 до<i> k </i>на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?

Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)

В ряду из 2009 гирек вес каждой гирьки составляет целое число граммов и не превышает 1 кг. Веса каждых двух соседних гирек отличаются ровно на 1 г, а общий вес всех гирь в граммах является чётным числом. Докажите, что гирьки можно разделить на две кучки, суммы весов в которых равны.

Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз?

От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.

Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?

Два игрока по очереди проводят диагонали в правильном (2<i>n+</i>1)-угольнике  (<i>n</i> > 1).  Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?

На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.

Числа <i>a, b, c</i> таковы, что  <i>a</i>²(<i>b + c</i>) = <i>b</i>²(<i>a + c</i>) = 2008  и  <i>a ≠ b</i>.  Найдите значение выражения  <i>c</i>²(<i>a + b</i>).

Внутри равнобедренного треугольника <i>ABC</i>  (<i>AB = BC</i>)  выбрана точка <i>M</i> таким образом, что  ∠<i>AMC</i> = 2∠<i>B</i>.  На отрезке <i>AM</i> нашлась такая точка <i>K</i>, что

∠<i>BKM</i> = ∠<i>B</i>.  Докажите, что  <i>BK = KM + MC</i>.

Существуют ли такие простые числа <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, ..., <i>p</i><sub>2007</sub>, что  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_2.gif">  делится на <i>p</i><sub>2</sub>,  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_3.gif">  делится на <i>p</i><sub>3</sub>, ...,  <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_4.gif">  делится на <i>p</i><sub>1</sub>?

Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?

В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.

Докажите, что все восемь отрезков равны.

При изготовлении партии из  <i>N</i> ≥ 5  монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково). Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь, убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?

Медиану <i>AA</i><sub>0</sub> треугольника <i>ABC</i> отложили от точки <i>A</i><sub>0</sub> перпендикулярно стороне <i>BC</i> во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через <i>A</i><sub>1</sub>. Аналогично строятся точки <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>. Найдите углы треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, если углы треугольника <i>ABC</i> равны 30°, 30° и 120°.

В клетчатом квадрате 101×101 каждая клетка внутреннего квадрата 99×99 покрашена в один из десяти цветов (клетки, примыкающие к границе квадрата, не покрашены). Может ли оказаться, что в каждом квадрате 3×3 в цвет центральной клетки покрашена еще ровно одна клетка?

На доске записано произведение <i>a</i><sub>1</sub><i>a</i><sub>2</sub>... <i>a</i><sub>100</sub>, где <i>a</i><sub>1</sub>, ..., <i>a</i><sub>100</sub> – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>100</sub> могло быть?

Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

В круговых автогонках участвовали четыре гонщика. Их машины стартовали одновременно из одной точки и двигались с постоянными скоростями. Известно, что после начала гонок для каждых трёх машин нашёлся момент, когда они встретились. Докажите, что после начала гонок найдётся момент, когда встретятся все четыре машины. (Гонки считаем бесконечно долгими по времени.)

Двое играют в такую игру. В начале по кругу стоят числа 1, 2, 3, 4. Каждым своим ходом первый прибавляет к двум соседним числам по 1, а второй меняет любые два соседних числа местами. Первый выигрывает, если все числа станут равными. Может ли второй ему помешать?

Найдите какое-нибудь такое девятизначное число <i>N</i>, состоящее из различных цифр, что среди всех чисел, получающихся из <i>N</i> вычеркиванием семи цифр, было бы не более одного простого.

Натуральные числа от 1 до 200 разбили на 50 множеств.

Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

Известно, что сумма цифр натурального числа <i>N</i> равна 100, а сумма цифр числа 5<i>N</i> равна 50. Докажите, что <i>N</i> чётно.

Даны 19 карточек. Можно ли на каждой из карточек написать ненулевую цифру так, чтобы из этих карточек можно было сложить ровно одно 19-значное число, кратное на 11?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка