Олимпиадные задачи из источника «2015-2016» для 11 класса

В треугольнике <i>ABC</i> медианы <i>AM<sub>A</sub>, BM<sub>B</sub></i> и <i>CM<sub>C</sub></i> пересекаются в точке <i>M</i>. Построим окружность Ω<sub><i>A</i></sub>, проходящую через середину отрезка <i>AM</i> и касающуюся отрезка <i>BC</i> в точке <i>MA</i>. Аналогично строятся окружности Ω<sub><i>B</i></sub> и Ω<sub><i>C</i></sub>. Докажите, что окружности Ω<sub><i>A</i></sub>, Ω<sub><i>B</i></sub> и Ω<sub><i>C</i></sub> имеют общую точку.

Сумма положительных чисел <i>a, b, c</i> и <i>d</i> равна 3. Докажите неравенство   <sup>1</sup>/<sub><i>a</i>³</sub> + <sup>1</sup>/<sub><i>b</i>³</sub> + <sup>1</sup>/<sub><i>c</i>³</sub> + <sup>1</sup>/<sub><i>d</i>³</sub> ≤ <sup>1</sup>/<sub><i>a</i>³<i>b</i><sup>3</sup><i>c</i>³<i>d</i>³</sub>.

В стране есть  <i>n</i> > 1  городов, некоторые пары городов соединены двусторонними беспосадочными авиарейсами. При этом между каждыми двумя городами существует единственный авиамаршрут (возможно, с пересадками). Мэр каждого города <i>X</i> подсчитал количество таких нумераций всех городов числами от 1 до <i>n</i>, что на любом авиамаршруте, начинающемся в <i>X</i>, номера городов идут в порядке возрастания. Все мэры, кроме одного, заметили, что их результаты подсчётов делятся на 2016. Докажите, что и у оставшегося мэра результат также делится на 2016.

Пусть <i>n</i> – натуральное число. На  2<i>n</i> + 1  карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении  *<i>x</i><sup>2<i>n</i></sup> + *<i>x</i><sup>2<i>n</i>–1</sup> + ... *<i>x</i> + *  так, чтобы полученный многочлен не имел <i>целых</i> корней. Всегда ли это можно сделать?

В координатном пространстве провели все плоскости с уравнениями  <i>x ± y ± z = n</i>  (при всех целых <i>n</i>). Они разбили пространство на тетраэдры и октаэдры. Пусть точка  (<i>x</i><sub>0</sub>, <i>y</i><sub>0</sub>, <i>z</i><sub>0</sub>)  с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное <i>k</i>, при котором точка  (<i>kx</i><sub>0</sub>, <i>ky</i><sub>0</sub>, <i>kz</i><sub>0</sub>)  лежит строго внутри некоторого октаэдра разбиения.

На клетчатый лист бумаги размера 100×100 положили несколько попарно неперекрывающихся картонных равнобедренных прямоугольных треугольничков с катетом 1; каждый треугольничек занимает ровно половину одной из клеток. Оказалось, что каждый единичный отрезок сетки (включая граничные) накрыт ровно одним катетом треугольничка. Найдите наибольшее возможное число клеток, не содержащих ни одного треугольничка.

В пространстве даны три отрезка <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub> и <i>C</i><sub>1</sub><i>C</i><sub>2</sub>, не лежащие в одной плоскости и пересекающиеся в одной точке <i>P</i>. Обозначим через <i>O<sub>ijk</sub></i> центр сферы, проходящей через точки <i>A<sub>i</sub>, B<sub>j</sub>, C<sub>k</sub></i> и <i>P</i>. Докажите, что прямые <i>O</i><sub>111</sub><i>O</i><sub>222</sub>, <i>O</i><sub>112</sub><i>O</i><sub>2...

Пусть <i>ABC</i> – остроугольный треугольник, в котором  <i>AC < BC; M</i> – середина стороны <i>AB</i>. В описанной окружности Ω треугольника <i>ABC</i>, проведён диаметр <i>CC'</i>. Прямая <i>CM</i> пересекает прямые <i>AC'</i> и <i>BC'</i> в точках <i>K</i> и <i>L</i> соответственно. Перпендикуляр к прямой <i>AC'</i>, проведённый через точку <i>K</i>, перпендикуляр к прямой <i>BC'</i>, проведённый через точку <i>L</i>, и прямая <i>AB</i> образуют треугольник Δ. Докажите, что описанная окружность ω треугольника Δ касается окружности Ω.

На доске написаны четыре попарно различных целых числа, модуль каждого из которых больше миллиона. Известно, что не существует натурального числа, большего 1, на которое бы делилось каждое из четырёх написанных чисел. Петя записал в тетрадку шесть попарных сумм этих чисел, разбил эти шесть сумм на три пары и перемножил числа в каждой паре. Могли ли все три произведения оказаться равными?

Внутри выпуклого 100-угольника выбрана точка <i>X</i>, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка <i>X</i> будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.

Натуральное число <i>N</i> представляется в виде  <i>N = a</i><sub>1</sub> – <i>a</i><sub>2</sub> = <i>b</i><sub>1</sub> – <i>b</i><sub>2</sub> = <i>c</i><sub>1</sub> – <i>c</i><sub>2</sub> = <i>d</i><sub>1</sub> – <i>d</i><sub>2</sub>,  где <i>a</i><sub>1</sub> и <i>a</i><sub>2</sub> – квадраты, <i>b</i><sub>1</sub> и <i>b</i><sub>2</sub> – кубы, <i>c</i><sub>1</sub> и <i>c</i><sub>2</sub> – пятые степени, а <i>d</i><sub>1</su...

Найдите все такие пары различных действительных чисел <i>x</i> и <i>y</i>, что  <i>x</i><sup>100</sup> – <i>y</i><sup>100</sup> = 2<sup>99</sup>(<i>x – y</i>)  и  <i>x</i><sup>200</sup> – <i>y</i><sup>200</sup> = 2<sup>199</sup>(<i>x – y</i>).

По кругу стоят <i>n</i> мальчиков и <i>n</i> девочек. Назовём пару из мальчика и девочки <i> хорошей</i>, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.

Дан выпуклый четырёхугольник <i>ABCD</i>, в котором  ∠<i>DAB</i> = 90°.  Пусть <i>M</i> – середина стороны <i>BC</i>. Оказалось. что  ∠<i>ADC</i> = ∠<i>BAM</i>.

Докажите, что  ∠<i>ADB</i> = ∠<i>CAM</i>.

В белой таблице 2016×2016 некоторые клетки окрасили чёрным. Назовём натуральное число <i>k удачным</i>, если  <i>k</i> ≤ 2016,  и в каждом из клетчатых квадратов со стороной <i>k</i>, расположенных в таблице, окрашено ровно <i>k</i> клеток. (Например, если все клетки чёрные, то удачным является только число 1.) Какое наибольшее количество чисел могут быть удачными?

Дана клетчатая таблица 100×100, клетки которой покрашены в чёрный и белый цвета. При этом во всех столбцах поровну чёрных клеток, в то время как во всех строках разные количества чёрных клеток. Каково максимальное возможное количество пар соседних по стороне разноцветных клеток?

В пространстве расположены 2016 сфер, никакие две из них не совпадают. Некоторые из сфер – красного цвета, а остальные – зелёного. Каждую точку касания красной и зелёной сферы покрасили в синий цвет. Найдите наибольшее возможное количество синих точек.

Есть клетчатая доска 2015×2015. Дима ставит в <i>k</i> клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем <i>k</i> Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?

В треугольнике <i>ABC</i> проведена биссектриса <i>BL</i>. На отрезке <i>CL</i> выбрана точка <i>M</i>. Касательная в точке <i>B</i> к описанной окружности Ω треугольника <i>ABC</i> пересекает луч <i>CA</i> в точке <i>P</i>. Касательные в точках <i>B</i> и <i>M</i> к описанной окружности Γ треугольника <i>BLM</i>, пересекаются в точке <i>Q</i>. Докажите, что прямые <i>PQ</i> и <i>BL</i> параллельны.

Положительные числа <i>x, y</i> и <i>z</i> удовлетворяют условию  <i>xyz ≥ xy + yz + zx</i>.  Докажите неравенство   <img align="absmiddle" src="/storage/problem-media/65705/problem_65705_img_2.png">

Квадратный трёхчлен  <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>,  не имеющий корней, таков, что коэффициент <i>b</i> рационален, а среди чисел <i>c</i> и <i>f</i>(<i>c</i>) ровно одно иррационально.

Может ли дискриминант трёхчлена  <i>f</i>(<i>x</i>) быть рациональным?

Внутри равнобокой трапеции <i>ABCD</i> с основаниями <i>BC</i> и <i>AD</i> расположена окружность ω с центром <i>I</i>, касающаяся отрезков <i>AB, CD</i> и <i>DA</i>. Описанная окружность треугольника <i>BIC</i> вторично пересекает сторону <i>AB</i> в точке <i>E</i>. Докажите, что прямая <i>CE</i> касается окружности ω.

Назовём непустое (конечное или бесконечное) множество <i>A</i>, состоящее из действительных чисел, <i> полным</i>, если для любых действительных <i>a</i> и <i>b</i> (не обязательно различных и не обязательно лежащих в <i>A</i>), при которых  <i>a + b</i>  лежит в <i>A</i>, число <i>ab</i> также лежит в <i>A</i>. Найдите все полные множества действительных чисел.

На стороне <i>AB</i> выпуклого четырёхугольника <i>ABCD</i> взяты точки <i>K</i> и <i>L</i> (точка<i>K</i> лежит между <i>A</i> и <i>L</i>), а на стороне <i>CD</i> взяты точки <i>M</i> и <i>N</i> (точка <i>M</i> между <i>C</i> и <i>N</i>). Известно, что  <i>AK = KN = DN</i>  и  <i>BL = BC = CM</i>.  Докажите, что если <i>BCNK</i> – вписанный четырёхугольник, то и <i>ADML</i> тоже вписан.

Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).

Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка