Олимпиадные задачи из источника «1999-2000» - сложность 3 с решениями

В стране 2000 городов. Каждый город связан беспосадочными двусторонними авиалиниями с некоторыми другими городами, причём для каждого города число исходящих из него авиалиний есть степень двойки (то есть 1, 2, 4, 8, ...). Для каждого города <i>A</i> статистик подсчитал количество маршрутов, имеющих не более одной пересадки, связывающих <i>A</i> с другими городами, а затем просуммировал полученные результаты по всем 2000 городам. У него получилось 100000. Докажите, что статистик ошибся.

Путь от платформы <i>A</i> до платформы <i>B</i> электропоезд прошел за <i>X</i> минут  (0 < <i>X</i> < 60).  Найдите <i>X</i>, если известно, что как в момент отправления от <i>A</i>, так и в момент прибытия в <i>B</i> угол между часовой и минутной стрелками равнялся <i>X</i> градусам.

Даны 8 гирек весом1<i>,</i>2<i>,..,</i>8граммов, но неизвестно, какая из них сколько весит. Барон Мюнхгаузен утверждает, что помнит, какая из гирек сколько весит, и в доказательство своей правоты готов провести одно взвешивание, в результате которого будет однозначно установлен вес хотя бы одной из гирь. Не обманывает ли он?

Два пирата делят добычу, состоящую из двух мешков монет и алмаза, действуя по следующим правилам. Вначале первый пират забирает себе из любого мешка несколько монет и перекладывает из этого мешка в другой такое же количество монет. Затем также поступает второй пират (выбирая мешок, из которого он берет монеты, по своему усмотрению) и т.д. до тех пор, пока можно брать монеты по этим правилам. Пирату, взявшему монеты последним, достается алмаз. Кому достанется алмаз, если каждый из пиратов старается получить его? Дайте ответ в зависимости от первоначального количества монет в мешках.

Какое наименьшее число сторон может иметь нечётноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?

В некотором городе на каждом перекрёстке сходятся ровно три улицы. Улицы раскрашены в три цвета так, что на каждом перекрёстке сходятся улицы трёх разных цветов. Из города выходят три дороги. Докажите, что они имеют разные цвета.

Ненулевые числа <i>a</i> и <i>b</i> удовлетворяют равенству  <i>a</i>²<i>b</i>²(<i>a</i>²<i>b</i>² + 4) = 2(<i>a</i><sup>6</sup> + <i>b</i><sup>6</sup>).  Докажите, что хотя бы одно из них иррационально.

Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.

Докажите, что найдётся квадрат 2×2, в котором число белых клеток нечётно.

Среди 2000 внешне неразличимых шариков половина – алюминиевые массой 10 г, а остальные – дюралевые массой 9,9 г. Требуется выделить две кучки шариков так, чтобы массы кучек были различны, а число шариков в них – одинаково. Каким наименьшим числом взвешиваний на чашечных весах без гирь это можно сделать?

В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке. <div align="center"><img src="/storage/problem-media/110043/problem_110043_img_2.gif"></div>Докажите, что сумма всех чисел в таблице делится на 200.

На прямой имеется2<i>n+</i>1отрезок. Любой отрезок пересекается по крайней мере с<i> n </i>другими. Докажите, что существует отрезок, пересекающийся со всеми остальными.

Существуют ли различные взаимно простые в совокупности натуральные числа <i>a, b</i> и <i>c</i>, большие 1 и такие, что  2<i><sup>a</sup></i> + 1  делится на <i>b</i>,  2<i><sup>b</sup></i> + 1  делится на <i>c</i>, а  2<i><sup>c</sup></i> + 1  делится на <i>a</i>?

Миша решил уравнение  <i>x</i>² + <i>ax + b</i> = 0  и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?

По данному натуральному числу <i>a</i><sub>0</sub> строится последовательность {<i>a<sub>n</sub></i>} следующим образом   <img align="absmiddle" src="/storage/problem-media/110036/problem_110036_img_2.gif">   если <i>a<sub>n</sub></i> нечётно, и <sup><i>a</i><sub>0</sub></sup>/<sub>2</sub>, если <i>a<sub>n</sub></i> чётно. Докажите, что при любом нечётном  <i>a</i><sub>0</sub> > 5  в последовательности {<i>a<sub>n</sub></i>} встретятся сколь угодно большие числа.

Существует ли функция<i> f</i>(<i>x</i>), определенная при всех<i> x<img src="/storage/problem-media/110035/problem_110035_img_2.gif"><img src="/storage/problem-media/110035/problem_110035_img_3.gif"> </i>и для всех<i> x,y<img src="/storage/problem-media/110035/problem_110035_img_2.gif"><img src="/storage/problem-media/110035/problem_110035_img_3.gif"> </i>удовлетворяющая неравенству <center><i>

|f</i>(<i>x+y</i>)<i>+ sin x+ sin y|<</i>2<i>? </i></center>

При каком наименьшем <i>n</i> квадрат <i>n</i>×<i>n</i> можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

Даны числа 1, 2, ..., <i>N</i>, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких <i>N</i> всегда можно сделать все числа белыми?

Для неотрицательных чисел <i>x</i> и <i>y</i>, не превосходящих 1, докажите, что   <img align="absmiddle" src="/storage/problem-media/110027/problem_110027_img_2.gif">

Последовательность<i> a</i>1<i>, a</i>2<i>,..,a</i>2000действительных чисел такова, что для любого натурального<i> n </i>,1<i><img src="/storage/problem-media/110026/problem_110026_img_2.gif"> n<img src="/storage/problem-media/110026/problem_110026_img_2.gif"></i>2000, выполняется равенство <center><i>

a</i>1<i></i>3<i>+a</i>2<i></i>3<i>+..+a<sub>n</sub></i>3<i>=</i>(<i>a</i>1<i>+a</i>2<i>+..+a<sub>n</sub></i>)<i></i>2<i>.

</i></center> Докажите, что все члены этой последовательности – целые числа.

Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?

Докажите, что можно выбрать такие различные действительные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>,  что уравнение

(<i>x – a</i><sub>1</sub>)(<i>x – a</i><sub>2</sub>)...(<i>x – a</i><sub>10</sub>) = (<i>x + a</i><sub>1</sub>)(<i>x + a</i><sub>2</sub>)...(<i>x + a</i><sub>10</sub>)  будет иметь ровно пять различных действительных корней.

В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.

Докажите, что существует циклический маршрут, длина которого не делится на 3.

Таня задумала натуральное число  <i>X</i> ≤ 100,  а Саша пытается его угадать. Он выбирает пару натуральных чисел <i>M</i> и <i>N</i>, меньших 100, и задаёт вопрос: "Чему равен наибольший общий делитель  <i>X + M</i>  и <i>N</i>?" Докажите, что Саша может угадать Танино число, задав семь таких вопросов.

Различные числа <i>a, b</i> и <i>c</i> таковы, что уравнения  <i>x</i>² + <i>ax</i> + 1 = 0  и  <i>x</i>² + <i>bx + c</i> = 0  имеют общий действительный корень. Кроме того, общий действительный корень имеют уравнения  <i>x</i>² + <i>x + a</i> = 0  и  <i>x</i>² + <i>cx + b</i> = 0.  Найдите сумму  <i>a + b + c</i>.

Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка