Олимпиадные задачи из источника «8 турнир (1986/1987 год)» - сложность 2 с решениями

Квадрат <i>ABCD</i> и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  <i>AEF, BGH, CIJ, DKL</i>  (<i>EF, GH, IJ, KL</i> – дуги окружности). Докажите, что

  а) сумма длин дуг <i>EF</i> и <i>IJ</i> равна сумме длин дуг <i>GH</i> и <i>KL</i>;

  б) сумма периметров криволинейных треугольников <i>AEF</i> и <i>CIJ</i> равна сумме периметров криволинейных треугольников <i>BGH</i> и <i>DKL</i>.

Дана трапеция <i>ABCD</i>, <i>M</i> – точка пересечения её диагоналей. Известно, что боковая сторона <i>AB</i> перпендикулярна основаниям <i>AD</i> и <i> BC</i> и что в трапецию можно вписать окружность. Найдите площадь треугольника <i> DCM</i>, если радиус этой окружности равен <i>r</i>.

В остроугольном треугольнике соединены основания высот. Оказалось, что в полученном треугольнике две стороны параллельны сторонам исходного треугольника. Докажите, что третья сторона также параллельна одной из сторон исходного треугольника.

Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?

В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.

(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).

Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.

Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета?

В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:

  а) левом верхнем,

  б) правом верхнем?

Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется

  а) четыре,

  б) пять

таких, в которые можно вписать окружность?

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через <i>a</i>, а до центров всех белых клеток – через <i>b</i>. Докажите, что  <i>a = b</i>.

Можно ли число 1986 представить в виде суммы шести квадратов нечётных чисел?

Кафельная плитка имеет форму прямоугольного треугольника с катетами 1 дм и 2 дм. Можно ли из 20 таких плиток сложить квадрат?

Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?

Через <i>n</i>!! обозначается произведение  <i>n</i>(<i>n</i> – 2)(<i>n</i> – 4)...  до единицы (или до двойки): например,  8!! = 8·6·4·2;  9!! = 9·7·5·3·1.

Докажите, что  1985!! + 1986!!  делится на 1987.

Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?

Существует ли такое <i>N</i> и такие  <i>N</i> – 1  бесконечных арифметических прогрессий с разностями  2, 3, 4, ..., <i>N</i>,  что каждое натуральное число принадлежит хотя бы одной из этих прогрессий?

Берутся всевозможные непустые подмножества из множества чисел   1, 2, 3, ..., <i>n</i>.  Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.

Даны два двузначных числа – <i>X</i> и <i>Y</i>. Известно, что <i>X</i> вдвое больше <i>Y</i>, одна цифра числа <i>Y</i> равна сумме, а другая – разности цифр числа <i>X</i>.

Найти эти числа.

В остроугольном треугольнике <i>ABC</i> угол <i>A</i> равен 60°. Докажите, что биссектриса одного из углов, образованных высотами, проведёнными из вершин <i>B</i> и <i>C</i>, проходит через центр описанной окружности этого треугольника.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка