Олимпиадная задача по планиметрии: квадрат и окружность, периметры криволинейных треугольников
Задача
Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника: AEF, BGH, CIJ, DKL (EF, GH, IJ, KL – дуги окружности). Докажите, что
а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.
Решение
а) Проведём два взаимно перпендикулярных диаметра окружности, параллельных сторонам AB и BC квадрата. Эти диаметры делят дуги окружности, лежащие вне квадрата, пополам, так как делят пополам хорды, стягивающие эти дуги. Поэтому сумма дуг EF и IJ получается так: нужно из двух противоположных четвертей окружности выкинуть половинки дуг, лежащих вне квадрата. Точно так же для суммы дуг GH и KL. б) Поскольку проведённые диаметры делят пополам хорды окружности, высекаемые на сторонах квадрата, то в каждой из пар вертикальных углов, образованных этими диаметрами, лежат отрезки, сумма длин которых равна половине периметра квадрата. Следовательно, суммы прямолинейных сторон соответствующих пар треугольников равны.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь