Олимпиадные задачи из источника «Турнир городов» - сложность 2 с решениями

Турнир городов

Назад

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

Через вершину <i>А</i> остроугольного треугольника <i>АВС</i> проведены касательная <i>АК</i> к его описанной окружности, а также биссектрисы <i>АN</i> и <i>AM</i> внутреннего и внешнего углов при вершине <i>А</i> (точки <i>М, K</i> и <i>N</i> лежат на прямой <i>ВС</i>). Докажите, что  <i>MK = KN</i>.

а) Внутри окружности находится некоторая точка <i>A</i>. Через <i>A</i> провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.

Докажите, что центр масс этих точек не зависит от выбора таких двух прямых. б) Внутри окружности находится правильный 2<i>n</i>-угольник  (<i>n</i> > 2),  его центр <i>A</i> не обязательно совпадает с центром окружности. Лучи, выпущенные из <i>A</i> в вершины 2<i>n</i>-угольника, высекают 2<i>n</i> точек на окружности. 2<i>n</i>-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2<i>n</i> новых точек. Докажите, что их центр масс совпадает с центром масс старых 2<i>n</i> точек....

В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.

На какую наибольшую степень двойки может делиться такое число?

Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:

   а) равные многоугольники;

   б) правильные многоугольники?

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.

Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в <sup>1</sup>/<sub>20</sub> всех экскурсий.

Окружность касается сторон <i>AB, BC, CD</i> параллелограмма <i>ABCD</i> в точках <i>K, L, M</i> соответственно.

Докажите, что прямая <i>KL</i> делит пополам высоту параллелограмма, опущенную из вершины <i>C</i> на <i>AB</i>.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>. (Например,  <i>C</i>(10) = 2,  <i>C</i>(11) = 1,  <i>C</i>(12) = 2.)

Конечно или бесконечно число таких пар натуральных чисел  (<i>a, b</i>),  что  <i>a ≠ b</i>  и  <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?

Про группу из пяти человек известно, что:    Алеша на 1 год старше Алексеева,

   Боря на 2 года старше Борисова,

   Вася на 3 года старше Васильева,

   Гриша на 4 года старше Григорьева,

   а еще в этой группе есть Дима и Дмитриев.Кто старше и на сколько: Дима или Дмитриев?

Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что  <i>ab = cd</i>.  Может ли число  <i>a + b + c + d</i>  оказаться простым?

Четырёхугольник <i>ABCD</i> без параллельных сторон вписан в окружность. Для каждой пары касающихся окружностей, одна из которых имеет хорду <i>AB</i>, а другая – хорду <i>CD</i>, отметим их точку касания <i>X</i>. Докажите, что все такие точки <i>X</i> лежат на одной окружности.

На плоскости нарисовали кривые  <i>y</i> = cos <i>x</i>  и  <i>x</i> = 100 cos(100<i>y</i>)  и отметили все точки их пересечения, координаты которых положительны. Пусть <i>a</i> – сумма абсцисс, а <i>b</i> – сумма ординат этих точек. Найдите  <sup><i>a</i></sup>/<sub><i>b</i></sub>.

Дана клетчатая полоска из 2<i>n</i> клеток, пронумерованных слева направо следующим образом:1, 2, 3, ..., <i>n</i>, –<i>n</i>, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число  2<i>n</i> + 1  простое.

Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.

Докажите, что многогранник имеет хотя бы три равных ребра.

В выражении  10 : 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1  расставили скобки так, что в результате вычислений получилось целое число. Каким

а) наибольшим;  б) наименьшим может быть это число?

Дан параллелограмм <i>ABCD</i>. Вписанные окружности треугольников <i>ABC</i> и <i>ADC</i> касаются диагонали <i>AC</i> в точках <i>X</i> и <i>Y</i>. Вписанные окружности треугольников <i>BCD</i> и <i>BAD</i> касаются диагонали <i>BD</i> в точках <i>Z</i> и <i>T</i>. Докажите, что если все точки <i>X, Y, Z, T</i> различны, то они являются вершинами прямоугольника.

Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?

Под одной из клеток доски 8×8 зарыт клад. Под каждой из остальных зарыта табличка, в которой указано, за какое наименьшее число шагов можно добраться из этой клетки до клада (одним шагом можно перейти из клетки в соседнюю по стороне клетку). Какое наименьшее число клеток надо перекопать, чтобы наверняка достать клад?

В клетках таблицы <i>n×n</i> стоят плюсы и минусы. За один ход разрешается в произвольной строке или в произвольном столбце поменять все знаки на противоположные. Известно, что из начальной расстановки можно получить такую, при которой во всех ячейках стоят плюсы. Докажите, что этого можно добиться не более чем за <i>n</i> ходов.

В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.

На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.

Какое наибольшее число различных может быть среди чисел на доске?

Имеются 100 камней разного веса (одинаковых нет), к каждому приклеена этикетка с указанием его веса. Хулиган Гриша хочет переклеить этикетки так, чтобы общий вес любого набора с числом камней от 1 до 99 отличался от суммы весов, указанных на этикетках из этого набора. Всегда ли он может это сделать?

На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во <i>владения</i> этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.

На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка