Олимпиадные задачи из источника «VIII Олимпиада по геометрии имени И.Ф. Шарыгина (2012 г.)» - сложность 3-5 с решениями

На стороне <i>BC</i> квадрата <i>ABCD</i> выбрали точку <i>M</i>. Пусть <i>X, Y, Z</i> – центры окружностей, вписанных в треугольники <i>ABM, CMD, AMD</i> соответственно; <i>H<sub>x</sub>, H<sub>y</sub>, H<sub>z</sub></i> – ортоцентры треугольников <i>AXB, CYD, AZD</i> соответственно. Докажите, что точки <i>H<sub>x</sub>, H<sub>y</sub>, H<sub>z</sub></i> лежат на одной прямой.

Дан треугольник <i>ABC</i>. Касательная в точке <i>C</i> к его описанной окружности пересекает прямую <i>AB</i> в точке <i>D</i>. Касательные к описанной окружности треугольника <i>ACD</i> в точках <i>A</i> и <i>C</i> пересекаются в точке <i>K</i>. Докажите, что прямая <i>DK</i> делит отрезок <i>BC</i> пополам.

Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.

Пусть <i>M</i> и <i>I</i> – точки пересечения медиан и биссектрис неравнобедренного треугольника <i>ABC</i>, а <i>r</i> – радиус вписанной в него окружности.

Докажите, что  <i>MI</i> = <sup><i>r</i></sup>/<sub>3</sub>  тогда и только тогда, когда прямая <i>MI</i> перпендикулярна одной из сторон треугольника.

Точку внутри треугольника назовём <i>хорошей</i>, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

Пусть <i>AH</i> – высота остроугольного треугольника <i>ABC</i>, а точки <i>K</i> и <i>L</i> – проекции <i>H</i> на стороны <i>AB</i> и <i>AC</i>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>KL</i> в точках <i>P</i> и <i>Q</i>, а прямую <i>AH</i> – в точках <i>A</i> и <i>T</i>. Докажите, что точка <i>H</i> является центром вписанной окружности треугольника <i>PQT</i>.

В выпуклом пятиугольнике <i>P</i> провели все диагонали, в результате чего он оказался разбитым на десять треугольников и один пятиугольник <i>P'</i>. Из суммы площадей треугольников, прилегающих к сторонам <i>P</i>, вычли площадь <i>P'</i>; получилось число <i>N</i>. Совершив те же операции с пятиугольником <i>P'</i>, получили число <i>N'</i>. Докажите, что  <i>N > N'</i>.

При каких  <i>n</i> > 3  правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

В треугольнике <i>ABC</i> провели биссектрису <i>CL</i>. В треугольники <i>CAL</i> и <i>CBL</i> вписали окружности, которые касаются прямой <i>AB</i> в точках <i>M</i> и <i>N</i> соответственно. Затем все, кроме точек <i>A, L, M</i> и <i>N</i>, стерли. С помощью циркуля и линейки восстановите треугольник.

Через вершины <i>A, B, C</i> треугольника <i>ABC</i> проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Точки <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub> симметричны точкам <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> относительно сторон <i>BC, CA, AB</i> соответственно. Докажите, что прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub>,...

Квадрат разрезан на несколько (больше одного) выпуклых многоугольников с попарно различным числом сторон.

Докажите, что среди них есть треугольник.

Высоты <i>AA</i><sub>1</sub>, <i>CC</i><sub>1</sub> остроугольного треугольника <i>ABC</i> пересекаются в точке <i>H</i>. Точка <i>Q</i> симметрична середине стороны <i>AC</i> относительно <i>AA</i><sub>1</sub>. Точка <i>P</i> – середина отрезка <i>A</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что  ∠<i>QPH</i> = 90°.

Окружность Ω описана около треугольника <i>ABC</i>. На продолжении стороны <i>AB</i> за точку <i>B</i> взяли такую точку <i>B</i><sub>1</sub>, что  <i>AB</i><sub>1</sub> = <i>AC</i>.  Биссектриса угла <i>A</i> пересекает Ω вторично в точке <i>W</i>. Докажите, что ортоцентр треугольника <i>AWB</i><sub>1</sub> лежит на Ω.

Дан равнобедренный треугольник <i>ABC</i>, в котором  ∠<i>B</i> = 120°.  На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> взяли точки <i>P</i> и <i>Q</i> соответственно так, что лучи <i>AQ</i> и <i>CP</i> пересекаются под прямым углом. Докажите, что  ∠<i>PQB</i> = 2∠<i>PCQ</i>.

Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других. <div align="center"><img src="/storage/problem-media/116897/problem_116897_img_2.gif"></div>

На плоскости даны <i>n</i>  (<i>n</i> > 2)  точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались?

На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.

Найдите геометрическое место всех таких центров тяжести.

В сегмент, ограниченный хордой и дугой <i>AB</i> окружности, вписана окружность ω с центром <i>I</i>. Обозначим середину указанной дуги <i>AB</i> через <i>M</i>, а середину дополнительной дуги через <i>N</i>. Из точки <i>N</i> проведены две прямые, касающиеся ω в точках <i>C</i> и <i>D</i>. Противоположные стороны <i>AD</i> и <i>BC</i> четырёхугольника <i>ABCD</i> пересекаются в точке <i>Y</i>, а его диагонали пересекаются в точке <i>X</i>. Докажите, что точки <i>X, Y, I</i> и <i>M</i> лежат на одной прямой.

Через ортоцентр остроугольного треугольника проведены две перпендикулярные прямые. Стороны треугольника высекают на каждой из этих прямых два отрезка: один, лежащий внутри треугольника, второй – вне его. Докажите, что произведение двух внутренних отрезков равно произведению двух внешних.

В треугольнике <i>ABC</i> на стороне <i>AB</i> отметили точку <i>D</i>. Пусть ω<sub>1</sub> и Ω<sub>1</sub>, ω<sub>2</sub> и Ω<sub>2</sub> – соответственно вписанные и вневписанные (касающиеся <i>AB</i> во внутренней точке) окружности треугольников <i>ACD</i> и <i>BCD</i>. Докажите, что общие внешние касательные к ω<sub>1</sub> и ω<sub>2</sub>, Ω<sub>1</sub> и Ω<sub>2</sub> пересекаются на прямой <i>AB</i>.

Две окружности радиуса 1 пересекаются в точках <i>X, Y</i>, расстояние между которыми тоже равно 1. Из точки <i>C</i> одной окружности проведены к другой касательные <i>CA, CB</i>, вторично пересекающие первую окружность в точках <i>B', A'</i>. Прямые <i>AA'</i> и <i>BB'</i> пересекаются в точке <i>Z</i>. Найдите угол <i>XZY</i>.

На плоскости начерчен треугольник и в нём отмечены две точки. Известно, что какой-то из углов треугольника равен 58°, какой-то из остальных – 59°, какая-то из отмеченных точек является центром вписанной окружности, а другая – центром описанной. Используя только линейку без делений, определите, где какой угол и где какая точка.

Дан треугольник <i>ABC</i>. Рассматриваются прямые <i>l</i>, обладающие следующим свойством: три прямые, симметричные <i>l</i> относительно сторон треугольника, пересекаются в одной точке. Докажите, что все такие прямые проходят через одну точку.

В выпуклом четырёхугольнике <i>ABCD</i>  <i>O</i> – точка пересечения диагоналей, а <i>M</i> – середина стороны <i>BC</i>. Прямые <i>MO</i> и <i>AD</i> пересекаются в точке <i>E</i>. Докажите, что  <i>AE</i> : <i>ED = S<sub>ABO</sub> : S<sub>CDO</sub></i>.

Даны точки <i>A, B</i>. Найдите геометрическое место таких точек <i>C</i>, что <i>C</i>, середины отрезков <i>AC, BC</i> и точка пересечения медиан треугольника <i>ABC</i> лежат на одной окружности.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка