Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 7 класса
В клетках квадрата 3×3 расставлены числа (рис. слева). Разрешается к числам, стоящим в двух соседних клетках, одновременно прибавлять одно и то же число, <i>не обязательно положительное</i>. Можно ли в какой-то момент получить такой квадрат с числами, как на рисунке справа? (Клетки считаются соседними, если имеют общую сторону.)<div align="center"><img src="/storage/problem-media/116845/problem_116845_img_2.gif"></div>
Малыш подарил Карлсону 111 конфет. Сколько-то из них они тут же съели вместе, 45% оставшихся конфет пошли Карлсону на обед, а треть конфет, оставшихся после обеда, нашла во время уборки фрёкен Бок. Сколько конфет она нашла?
Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?<div align="center"><img src="/storage/problem-media/116843/problem_116843_img_2.gif"></div>
Собираясь в школу, Миша нашёл под подушкой, под диваном, на столе и под столом все необходимое: тетрадь, шпаргалку, плеер и кроссовки. Под столом он нашёл не тетрадь и не плеер. Мишины шпаргалки никогда не валяются на полу. Плеера не оказалось ни на столе, ни под диваном. Что где лежало, если в каждом из мест находился только один предмет?
В записи ¼ ¼ ¼ ¼ расставьте знаки действий и, если нужно, скобки так, чтобы значение получившегося выражения равнялось 2.
Малыш и Карлсон вместе съели банку варенья. При этом Карлсон съел на 40% меньше ложек варенья, чем Малыш, но зато в его ложке помещалось на 150% варенья больше, чем в ложке Малыша. Какую часть банки варенья съел Карлсон?
Внутри угла <i>AOB</i>, равного 120°, проведены лучи <i>OC</i> и <i>OD</i> так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла <i>AOC</i>, указав все возможные варианты.
В окружности с центром <i>O</i> проведена хорда <i>AB</i> и радиус <i>OK</i>, пересекающий её под прямым углом в точке <i>M</i>. На большей дуге <i>AB</i> окружности выбрана точка <i>P</i>, отличная от середины этой дуги. Прямая <i>PM</i> вторично пересекает окружность в точке <i>Q</i>, а прямая <i>PK</i> пересекает <i>AB</i> в точке <i>R</i>. Докажите, что <i>KR > MQ</i>.
Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?
На сторонах <i>AC</i> и <i>BC</i> треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>N</i> соответственно так, что <i>MN || AB</i>. На стороне <i>AC</i> отмечена точка <i>K</i> так, что <i>CK = AM</i>. Отрезки <i>AN</i> и <i>BK</i> пересекаются в точке <i>F</i>. Докажите, что площади треугольника <i>ABF</i> и четырёхугольника <i>KFNC</i> равны.
Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?
<i>AL</i> – биссектриса треугольника <i>ABC, K</i> – такая точка на стороне <i>AC</i>, что <i>CK = CL</i>. Прямая <i>KL</i> и биссектриса угла <i>B</i> пересекаются в точке <i>P</i>.
Докажите, что <i>AP = PL</i>.
Незнайка утверждает, что существует восемь таких последовательных натуральных чисел, что в разложение их на простые множители каждый множитель входит в нечётной степени (например, два таких последовательных числа: 23 = 23<sup>1</sup> и 24 = 2³·3<sup>1</sup>). Прав ли он?
В трапеции <i>ABCD</i> основание <i>AD</i> в четыре раза больше чем <i>BC</i>. Прямая, проходящая через середину диагонали <i>BD</i> и параллельная <i>AB</i>, пересекает сторону <i>CD</i> в точке <i>K</i>. Найдите отношение <i>DK</i> : <i>KC</i>.
На рисунке изображен график приведённого квадратного трёхчлена (ось ординат стёрлась, расстояние между соседними отмеченными точками
равно 1). Чему равен дискриминант этого трёхчлена? <div align="center"><img src="/storage/problem-media/116482/problem_116482_img_2.gif"></div>
После возвращения цирка с гастролей, знакомые расспрашивали дрессировщика Казимира Алмазова о пассажирах его автофургона.
– Тигры были?
– Да, причём их было в семь раз больше, чем не тигров.
– А обезьяны?
– Да, их было в семь раз меньше, чем не обезьян.
– А львы были?
Ответьте за Казимира Алмазова.
Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. На продолжении стороны <i>AB</i> за точку <i>B</i> отмечена такая точка <i>M</i>, что <i>MC = MD</i>.
Докажите, что ∠<i>AMO</i> = ∠<i>MAD</i>.
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
Назовём натуральное семизначное число <i>удачным</i>, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?
На стороне <i>AB</i> треугольника <i>ABC</i> отмечена точка <i>K</i>. Отрезок <i>CK</i> пересекает медиану <i>AM</i> треугольника в точке <i>P</i>. Оказалось, что <i>AK = AP</i>.
Найдите отношение <i>BK</i> : <i>PM</i>.
На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?
Вычислите: <img align="absmiddle" src="/storage/problem-media/116475/problem_116475_img_2.gif">
Из пункта<i>А</i>в пункт<i>В</i>вышел пешеход. Одновременно с ним из<i>В</i>в<i>А</i>выехал велосипедист. Через час пешеход оказался ровно посередине между пунктом<i>А</i>и велосипедистом. Ещё через 15 минут они встретились, и каждый продолжил свой путь. Сколько времени потратил пешеход на путь из<i>А</i>до<i>В</i>? (Скорости пешехода и велосипедиста постоянны.)
Однажды Миша, Витя и Коля заметили, что принесли в детский сад одинаковые игрушечные машинки. У Миши есть машинка с прицепом, есть маленькая машинка и есть зеленая машинка без прицепа. У Вити есть машинка без прицепа и маленькая зеленая с прицепом, а у Коли — большая машинка и маленькая синяя с прицепом. Машинку какого вида (по цвету, размеру и наличию прицепа) принесли мальчики в детский сад? Ответ объясните.
Какие цифры могут стоять на месте букв в примере <i>AB·C = DE</i>, если различными буквами обозначены различные цифры и слева направо цифры записаны в порядке возрастания?