Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 10 класса - сложность 2-5 с решениями
В правильной четырёхугольной усечённой пирамиде середина <i>N</i> ребра <i>B</i><sub>1</sub><i>C</i><sub>1</sub> верхней грани <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> соединена с серединой <i>M</i> ребра <i>AB</i> нижней грани <i>ABCD</i>. Прямые <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> не лежат в одной плоскости. Докажите, что проекции рёбер <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> на прямую <i>MN</i> равн...
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Точка <i>Х</i> расположена на диаметре <i>АВ</i> окружности радиуса <i>R</i>. Точки <i>K</i> и <i>N</i> лежат на окружности в одной полуплоскости относительно <i>АВ</i>,
а ∠<i>KXA</i> = ∠<i>NXB</i> = 60°. Найдите длину отрезка <i>KN</i>.
Функция <i>f</i>(<i>x</i>) такова, что для всех значений <i>x</i> выполняется равенство <i>f</i>(<i>x</i> + 1) = <i>f</i>(<i>x</i>) + 2<i>x</i> + 3. Известно, что <i>f</i>(0) = 1. Найдите <i>f</i>(2012).
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Даны <i>n</i> + 1 попарно различных натуральных чисел, меньших 2<i>n</i> (<i>n</i> > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.
Дана равнобокая трапеция <i>ABCD</i> (<i>AD || BC</i>). На дуге <i>AD</i> (не содержащей точек <i>B</i> и <i>C</i>) описанной окружности этой трапеции произвольно выбрана точка <i>M</i>. Докажите, что основания перпендикуляров, опущенных из вершин <i>A</i> и <i>D</i> на отрезки <i>BM</i> и <i>CM</i>, лежат на одной окружности.
Вася придумал новую шахматную фигуру "супер-слон". Один "супер-слон" (обозначим его <i>A</i>) бьёт другого (обозначим его <i>B</i>), если они стоят на одной диагонали, между ними нет фигур, и следующая по диагонали клетка за "супер-слоном" <i>B</i> свободна. Например, на рисунке фигура <i>a</i> бьёт фигуру <i>b</i>, но не бьёт ни одну из фигур <i>c, d, e, f</i> и <i>g</i>. <div align="center"><img src="/storage/problem-media/116871/problem_116871_img_2.gif"></div>Какое наибольшее количество "супер-слонов" можно поставить на шахматную доску так, чтобы каждый из них бился хотя бы одним другим?
На сторонах <i>AB</i> и <i>BC</i> равностороннего треугольника <i>ABC</i> отмечены точки <i>L</i> и <i>K</i> соответственно, <i>M</i> – точка пересечения отрезков <i>AK</i> и <i>CL</i>. Известно, что площадь треугольника <i>AMC</i> равна площади четырёхугольника <i>LBKM</i>. Найдите угол <i>AMC</i>.
Квадратный трёхчлен <i>ax</i>² + 2<i>bx + c</i> имеет два различных корня, а квадратный трёхчлен <i>a</i>²<i>x</i>² + 2<i>b</i>²<i>x + c</i>² корней не имеет.
Докажите, что у первого трёхчлена корни разного знака.
Расставьте в кружках, расположенных в вершинах квадрата и в его центре, пять натуральных чисел так, чтобы каждые два числа, соединенные отрезком, имели общий делитель, больший 1, а любые два числа, не соединенные отрезком, были бы взаимно просты. <div align="center"><img src="/storage/problem-media/116868/problem_116868_img_2.gif"></div>
Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?
Известно, что <i>A</i> – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.
На какую наибольшую степень тройки делится число <i>A</i>?
Две окружности касаются внешним образом. <i>A</i> – точка касания их общей внешней касательной с одной из окружностей, <i>B</i> – точка той же окружности, диаметрально противоположная точке <i>A</i>. Докажите, что длина касательной, проведённой из точки <i>B</i> ко второй окружности, равна диаметру первой окружности.
Длина ребра правильного тетраэдра равна <i>a</i>. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр <i>P</i> этого треугольника удовлетворяет неравенству <i>P</i> > 2<i>a</i>.
Докажите, что уравнение <i>l</i>² + <i>m</i>² = <i>n</i>² + 3 имеет бесконечно много решений в натуральных числах.
Прямая пересекает график функции <i>y = x</i>² в точках с абсциссами <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>, а ось абсцисс – в точке с абсциссой <i>x</i><sub>3</sub>. Докажите, что <img align="absmiddle" src="/storage/problem-media/116488/problem_116488_img_2.gif"> .
На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
Докажите, что у семи из них есть общий дедушка.
Дан такой набор из 2009 чисел, что если каждое число в наборе заменить на сумму остальных чисел, то получится тот же набор.
Найдите произведение всех чисел набора.
Задайте формулой какую-нибудь квадратичную функцию, график которой пересекает оси координат в вершинах прямоугольного треугольника.
В треугольнике<i> АВС </i>:<i> АС = <img align="absmiddle" src="/storage/problem-media/115455/problem_115455_img_2.gif"> </i>. Докажите, что центры вписанной и описанной окружностей треугольника<i> АВС </i>, середины сторон<i> АВ </i>и<i> ВС </i>и вершина<i> В </i>лежат на одной окружности.
В течение92дней авиакомпания ежедневно выполняла по десять рейсов. За день каждый самолет выполнял не более одного рейса. Известно, что для любой пары дней найдется один и только один самолет, летавший в оба эти дня. Докажите, что есть самолет, летавший каждый день.
Существуют ли нечётные целые числа <i>х, у</i> и <i>z</i>, удовлетворяющие равенству (<i>x + y</i>)² + (<i>x + z</i>)² = (<i>y + z</i>)²?
Пусть<i> α </i>,<i> β </i>,<i> γ </i>и<i> δ </i> — градусные меры углов некоторого выпуклого четырехугольника. Всегда ли из этих четырех чисел можно выбрать три числа так, чтобы они выражали длины сторон некоторого треугольника (например, в метрах)?
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел. Какое из оставшихся чисел стоит на сотом месте?