Олимпиадные задачи из источника «Московская математическая регата» для 7 класса

Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что  <i>ab = cd</i>.  Может ли число  <i>a + b + c + d</i>  оказаться простым?

На стороне <i>ВС</i> равностороннего треугольника <i>АВС</i> отмечены точки <i>K</i> и <i>L</i> так, что  <i>BK = KL = LC</i>,  а на стороне <i>АС</i> отмечена точка <i>М</i> так,

что  <i>АМ</i> = &frac13; <i>AC</i>.  Найдите сумму углов <i>AKM</i> и <i>ALM</i>.

Для чисел <i>а, b</i> и <i>с</i>, отличных от нуля, выполняется равенство:  <i>a</i>²(<i>b + c – a</i>) = <i>b</i>²(<i>c + a – b</i>) = <i>c</i>²(<i>a + b – c</i>).   Следует ли из этого, что  <i>а = b = c</i>?

В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?

В прямоугольнике <i>АВСD</i> точка <i>Р</i> – середина стороны <i>АВ</i>, а точка <i>Q</i> – основание перпендикуляра, опушенного из вершины <i>С</i> на <i>PD</i>.

Докажите, что  <i>BQ = BC</i>.

Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?

Является ли простым число  2011·2111 + 2500?

Разрежьте квадрат 4×4 по линиям сетки на 9 прямоугольников так, чтобы равные прямоугольники не соприкасались ни сторонами, ни вершинами.

На рисунке изображен график функции  <i>у = kx + b</i> .  Сравните |<i>k</i>| и |<i>b</i>|. <div align="center"><img src="/storage/problem-media/116734/problem_116734_img_2.gif"></div>

Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл?

У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?

Существуют ли два одночлена, произведение которых равно –12<i>а</i><sup>4</sup><i>b</i>², а сумма является одночленом с коэффициентом 1?

Существуют ли пять таких двузначных составных чисел, что каждые два из них взаимно просты?

В треугольниках <i>АВС</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>:  ∠<i>А</i> = ∠<i>А</i><sub>1</sub>,  равны высоты, проведённые из вершин <i>В</i> и <i>В</i><sub>1</sub>, а также равны медианы, проведённые из вершин <i>С</i> и <i>С</i><sub>1</sub>. Обязательно ли эти треугольники равны?

Дан квадрат <i>ABCD</i>. На стороне <i>AD</i> внутрь квадрата построен равносторонний треугольник <i>ADE</i>. Диагональ <i>AC</i> пересекает сторону <i>ED</i> этого треугольника в точке <i>F</i>. Докажите, что  <i>CE = CF</i>.

Существуют ли такие целые числа <i>x, y</i> и <i>z</i>, для которых выполняется равенство:  (<i>x – y</i>)³ + (<i>y – z</i>)³ + (<i>z – x</i>)³ = 2011?

Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)

Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?

Из четырёх неравенств  2<i>x</i> > 70,  <i>x</i> < 100,  4<i>x</i> > 25  и  <i>x</i> > 5  два истинны и два ложны. Найдите значение <i>x</i>, если известно, что оно целое.

Найдите все пары простых чисел, разность квадратов которых является простым числом.

В окружности провели диаметр <i>AB</i> и параллельную ему хорду <i>CD</i>, так, что расстояние между ними равно половине радиуса этой окружности (см. рис.). Найдите угол <i>CAB</i>.<div align="center"><img src="/storage/problem-media/116143/problem_116143_img_2.gif"></div>

В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.

Сколько животных в стаде, если количество лошадей равно количеству двугорбых верблюдов? .

На доске записаны числа 1, 2<sup>1</sup>, 2², 2³, 2<sup>4</sup>, 2<sup>5</sup>. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.

Может ли на доске в результате нескольких таких операций остаться только число 15?

Медиана треугольника в полтора раза больше стороны, к которой она проведена. Найдите угол между двумя другими медианами.

Найдите<i>x</i><sup>3</sup>+<i>y</i><sup>3</sup>, если известно, что<i>x + y</i>= 5 и<i>x + y + x</i><sup>2</sup><i>y</i>+<i>xy</i><sup>2</sup>= 24.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка