Олимпиадные задачи из источника «2010/11»
Существуют ли пять таких двузначных составных чисел, что каждые два из них взаимно просты?
В треугольниках <i>АВС</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>: ∠<i>А</i> = ∠<i>А</i><sub>1</sub>, равны высоты, проведённые из вершин <i>В</i> и <i>В</i><sub>1</sub>, а также равны медианы, проведённые из вершин <i>С</i> и <i>С</i><sub>1</sub>. Обязательно ли эти треугольники равны?
Дан квадрат <i>ABCD</i>. На стороне <i>AD</i> внутрь квадрата построен равносторонний треугольник <i>ADE</i>. Диагональ <i>AC</i> пересекает сторону <i>ED</i> этого треугольника в точке <i>F</i>. Докажите, что <i>CE = CF</i>.
Существуют ли такие целые числа <i>x, y</i> и <i>z</i>, для которых выполняется равенство: (<i>x – y</i>)³ + (<i>y – z</i>)³ + (<i>z – x</i>)³ = 2011?
Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)
Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?
Из четырёх неравенств 2<i>x</i> > 70, <i>x</i> < 100, 4<i>x</i> > 25 и <i>x</i> > 5 два истинны и два ложны. Найдите значение <i>x</i>, если известно, что оно целое.
Найдите все пары простых чисел, разность квадратов которых является простым числом.
В окружности провели диаметр <i>AB</i> и параллельную ему хорду <i>CD</i>, так, что расстояние между ними равно половине радиуса этой окружности (см. рис.). Найдите угол <i>CAB</i>.<div align="center"><img src="/storage/problem-media/116143/problem_116143_img_2.gif"></div>
В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.
Сколько животных в стаде, если количество лошадей равно количеству двугорбых верблюдов? .
Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?
В трапеции <i>ABCD</i> биссектриса тупого угла <i>B</i> пересекает основание <i>AD</i> в точке <i>K</i> – его середине, <i>M</i> – середина <i>BC, AB = BC</i>.
Найдите отношение <i>KM</i> : <i>BD</i>.
Найдите наибольшее натуральное <i>n</i>, при котором <i>n</i><sup>200</sup> < 5<sup>300</sup>.
Найдите все простые числа <i>p, q</i> и <i>r</i>, для которых выполняется равенство: <i>p + q</i> = (<i>p – q</i>)<sup><i>r</i></sup>.
В выпуклом четырёхугольнике <i>ABCD</i>: ∠<i>ВАС</i> = 20°, ∠<i>ВСА</i> = 35°, ∠<i>ВDС</i> = 40°, ∠<i>ВDА</i> = 70°.
Найдите угол между диагоналями четырёхугольника.
Для различных положительных чисел <i>а</i> и <i>b</i> выполняется равенство <img align="absmiddle" src="/storage/problem-media/116018/problem_116018_img_2.png">. Докажите, что <i>а</i> и <i>b</i> – взаимно обратные числа.
Существует ли прямоугольный треугольник, в котором две медианы перпендикулярны?
Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?
Найдите наименьшее натуральное <i>n</i>, при котором число <i>А = n</i>³ + 12<i>n</i>² + 15<i>n</i> + 180 делится на 23.
В остроугольном треугольнике <i>АВС</i> угол <i>В</i> равен 45°, <i>АМ</i> и <i>CN</i> – высоты, <i>О</i> – центр описанной окружности, <i>Н</i> – ортоцентр.
Докажите, что <i>ОNHМ</i> – параллелограмм.
Известно, что 5(<i>а</i> – 1) = <i>b + a</i>². Сравните числа <i>а</i> и <i>b</i>.
На доске записаны числа 1, 2<sup>1</sup>, 2², 2³, 2<sup>4</sup>, 2<sup>5</sup>. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?
В равнобокой трапеции <i>AВСD</i> основания <i>AD</i> и <i>ВС</i> равны 12 и 6 соответственно, а высота равна 4. Сравните углы <i>ВАС</i> и <i>САD</i>.
На координатной плоскости изображен график функции <i>y = ax</i>² + <i>c</i> (см. рисунок). В каких точках график функции <i>y = cx + a</i> пересекает оси координат? <div align="center"><img src="/storage/problem-media/116009/problem_116009_img_2.gif"></div>
В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.
Как сыграли между собой шахматисты, занявшие третье и седьмое места?