Олимпиадные задачи по теме «Методы решения задач с параметром» - сложность 3 с решениями
Методы решения задач с параметром
НазадДан квадратный трёхчлен <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>. Известно, что для любого вещественного <i>x</i> существует такое вещественное <i>y</i>, что <i>f</i>(<i>y</i>) = <i>f</i>(<i>x</i>) + <i>y</i>. Найдите наибольшее возможное значение <i>a</i>.
Пусть<i> f</i>(<i>x</i>)<i>=x<sup>2</sup>+ax+b cos x </i>. Найдите все значения параметров<i> a </i>и<i> b </i>, при которых уравнения<i> f</i>(<i>x</i>)<i>=</i>0и<i> f</i>(<i>f</i>(<i>x</i>))<i>=</i>0имеют совпадающие непустые множества действительных корней.
Для каких<i> α </i>существует функция<i> f </i>:<i> <img src="/storage/problem-media/109912/problem_109912_img_2.gif"><img src="/storage/problem-media/109912/problem_109912_img_3.gif"><img src="/storage/problem-media/109912/problem_109912_img_2.gif"> </i>, отличная от константы, такая, что <center><i>
f</i>(<i>α</i>(<i>x+y</i>))<i>=f</i>(<i>x</i>)<i>+f</i>(<i>y</i>)<i>;? </i></center>
Рассматриваются такие квадратичные функции <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>, что <i>a < b</i> и <i>f</i>(<i>x</i>) ≥ 0 для всех <i>x</i>.
Какое наименьшее значение может принимать выражение <sup><i>a+b+c</i></sup>/<sub><i>b–a</i></sub> ?
Значение <i>a</i> подобрано так, что число корней первого из уравнений 4<sup><i>x</i></sup> – 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i>, 4<sup><i>x</i></sup> + 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i> + 4 равно 2007.
Сколько корней при том же <i>a</i> имеет второе уравнение?
Доказать, что каковы бы ни были числа <i>a, b, c</i>, по крайней мере одно из уравнений
<i>a</i> sin <i>x + b</i> cos <i>x + c</i> = 0, 2<i>a</i> tg <i>x + b</i> ctg <i>x</i> + 2<i>c</i> = 0
имеет решение.
Положительные числа <i>A, B, C</i> и <i>D</i> таковы, что система уравнений
<i>x</i>² + <i>y</i>² = <i>A</i>,
|<i>x| + |y| = B</i>
имеет <i>m</i> решений, а система уравнений
<i>x</i>² + <i>y</i>² + <i>z</i>² = <i>C</i>,
|<i>x| + |y| + |z| = D</i>
имеет <i>n</i> решений. Известно, что <i>m > n</i> > 1. Найдите <i>m</i> и <i>n</i>.
В квадратном уравнении <i>x</i>² + <i>px + q</i> коэффициенты <i>p, q</i> независимо пробегают все значения от –1 до 1 включительно.
Найти множество значений, которые при этом принимает действительный корень данного уравнения.
Решить уравнение <img width="98" height="39" align="MIDDLE" border="0" src="/storage/problem-media/76453/problem_76453_img_2.gif"> = <i>x</i>.
Пусть <i>a</i> – заданное вещественное число, <i>n</i> – натуральное число, <i>n</i> > 1.
Найдите все такие <i>x</i>, что сумма корней <i>n</i>-й степени из чисел <i>x<sup>n</sup> – a<sup>n</sup></i> и 2<i>a<sup>n</sup> – x<sup>n</sup></i> равна числу <i>a</i>.
Исследуйте, сколько решений имеет система уравнений
<i>x</i>² + <i>y</i>² + <i>xy = a</i>,
<i>x</i>² – <i>y</i>² = <i>b</i>,
где <i>а</i> и <i>b</i> – некоторые данные действительные числа.
Пусть <i>p</i> – произвольное вещественное число. Найдите все такие <i>x</i>, что сумма кубических корней из чисел 1 – <i>x</i> и 1 + <i>x</i> равна <i>p</i>.
Исследуйте системы уравнений: а) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_3.gif"> б) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_4.gif"> в) <img width="20" height="73" align="MIDDLE" borde...
Изобразите на фазовой плоскости <i>Opq</i> множество точек (<i>p, q</i>), для которых уравнение <i>x</i>³ + <i>px + q</i> = 0 имеет три различных корня, принадлежащих интервалу (–2, 4).
Изобразите на фазовой плоскости <i>Opq</i> множества точек (<i>p, q</i>), для которых все корни уравнения <i>x</i>³ + <i>px + q</i> = 0 не превосходят по модулю 1.
Изобразите на фазовой плоскости <i>Opq</i> множества точек (<i>p, q</i>), для которых уравнение <i>x</i>³ + <i>px + q</i> = 0 имеет
а) один корень; б) два корня; в) три различных корня; г) три совпадающих корня.
Найдите все действительные значения <i>a</i> и <i>b</i>, при которых уравнения <i>x</i>³ + <i>ax</i>² + 18 = 0, <i>x</i>³ + <i>bx</i> + 12 = 0 имеют два общих корня, и определите эти корни.
Найдите все значения параметра <i>a</i>, при которых корни <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub> многочлена <i>x</i><sup>3</sup> – 6<i>x</i><sup>2</sup> + <i>ax + a</i> удовлетворяют равенству
(<i>x</i><sub>1</sub> – 3)<sup>3</sup> + (<i>x</i><sub>2</sub> – 3)<sup>3</sup> + (<i>x</i><sub>3</sub> – 3)<sup>3</sup> = 0.
Найдите необходимое и достаточное условие для того, чтобы выражение <i>x</i>³ + <i>y</i>³ + <i>z</i>³ + <i>kxyz</i> делилось на <i>x + y + z</i>.