Олимпиадные задачи по теме «Методы решения задач с параметром» - сложность 3 с решениями

Дан квадратный трёхчлен  <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>.  Известно, что для любого вещественного <i>x</i> существует такое вещественное <i>y</i>, что   <i>f</i>(<i>y</i>) = <i>f</i>(<i>x</i>) + <i>y</i>.  Найдите наибольшее возможное значение <i>a</i>.

Пусть<i> f</i>(<i>x</i>)<i>=x<sup>2</sup>+ax+b cos x </i>. Найдите все значения параметров<i> a </i>и<i> b </i>, при которых уравнения<i> f</i>(<i>x</i>)<i>=</i>0и<i> f</i>(<i>f</i>(<i>x</i>))<i>=</i>0имеют совпадающие непустые множества действительных корней.

Для каких<i> α </i>существует функция<i> f </i>:<i> <img src="/storage/problem-media/109912/problem_109912_img_2.gif"><img src="/storage/problem-media/109912/problem_109912_img_3.gif"><img src="/storage/problem-media/109912/problem_109912_img_2.gif"> </i>, отличная от константы, такая, что <center><i>

f</i>(<i>α</i>(<i>x+y</i>))<i>=f</i>(<i>x</i>)<i>+f</i>(<i>y</i>)<i>;? </i></center>

Рассматриваются такие квадратичные функции  <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>,  что  <i>a < b</i>  и  <i>f</i>(<i>x</i>) ≥ 0  для всех <i>x</i>.

Какое наименьшее значение может принимать выражение  <sup><i>a+b+c</i></sup>/<sub><i>b–a</i></sub> ?

Значение <i>a</i> подобрано так, что число корней первого из уравнений  4<sup><i>x</i></sup> – 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i>,  4<sup><i>x</i></sup> + 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i> + 4  равно 2007.

Сколько корней при том же <i>a</i> имеет второе уравнение?

Доказать, что каковы бы ни были числа <i>a, b, c</i>, по крайней мере одно из уравнений

    <i>a</i> sin <i>x + b</i> cos <i>x + c</i> = 0,   2<i>a</i> tg <i>x + b</i> ctg <i>x</i> + 2<i>c</i> = 0

имеет решение.

Положительные числа <i>A, B, C</i> и <i>D</i> таковы, что система уравнений

    <i>x</i>² + <i>y</i>² = <i>A</i>,

    |<i>x| + |y| = B</i>

имеет <i>m</i> решений, а система уравнений

    <i>x</i>² + <i>y</i>² + <i>z</i>² = <i>C</i>,

    |<i>x| + |y| + |z| = D</i>

имеет <i>n</i> решений. Известно, что  <i>m > n</i> > 1.  Найдите <i>m</i> и <i>n</i>.

В квадратном уравнении  <i>x</i>² + <i>px + q</i>  коэффициенты <i>p, q</i> независимо пробегают все значения от –1 до 1 включительно.

Найти множество значений, которые при этом принимает действительный корень данного уравнения.

Решить уравнение  <img width="98" height="39" align="MIDDLE" border="0" src="/storage/problem-media/76453/problem_76453_img_2.gif"> = <i>x</i>.

Пусть <i>a</i> – заданное вещественное число, <i>n</i> – натуральное число,  <i>n</i> > 1.

Найдите все такие <i>x</i>, что сумма корней <i>n</i>-й степени из чисел  <i>x<sup>n</sup> – a<sup>n</sup></i>  и  2<i>a<sup>n</sup> – x<sup>n</sup></i>  равна числу <i>a</i>.

Исследуйте, сколько решений имеет система уравнений

    <i>x</i>² + <i>y</i>² + <i>xy = a</i>,

    <i>x</i>² – <i>y</i>² = <i>b</i>,

где <i>а</i> и <i>b</i> – некоторые данные действительные числа.

Пусть <i>p</i> – произвольное вещественное число. Найдите все такие <i>x</i>, что сумма кубических корней из чисел  1 – <i>x</i>  и  1 + <i>x</i>  равна <i>p</i>.

Исследуйте системы уравнений: а) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_3.gif"> б) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_4.gif"> в) <img width="20" height="73" align="MIDDLE" borde...

Изобразите на фазовой плоскости <i>Opq</i> множество точек  (<i>p, q</i>),  для которых уравнение  <i>x</i>³ + <i>px + q</i> = 0  имеет три различных корня, принадлежащих интервалу  (–2, 4).

Изобразите на фазовой плоскости <i>Opq</i> множества точек  (<i>p, q</i>),  для которых все корни уравнения  <i>x</i>³ + <i>px + q</i> = 0  не превосходят по модулю 1.

Изобразите на фазовой плоскости <i>Opq</i> множества точек  (<i>p, q</i>),  для которых уравнение  <i>x</i>³ + <i>px + q</i> = 0  имеет

  а) один корень;   б) два корня;   в) три различных корня;   г) три совпадающих корня.

Найдите все действительные значения <i>a</i> и <i>b</i>, при которых уравнения  <i>x</i>³ + <i>ax</i>² + 18 = 0,   <i>x</i>³ + <i>bx</i> + 12 = 0  имеют два общих корня, и определите эти корни.

Найдите все значения параметра <i>a</i>, при которых корни <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub> многочлена  <i>x</i><sup>3</sup> – 6<i>x</i><sup>2</sup> + <i>ax + a</i>  удовлетворяют равенству

(<i>x</i><sub>1</sub> – 3)<sup>3</sup> + (<i>x</i><sub>2</sub> – 3)<sup>3</sup> + (<i>x</i><sub>3</sub> – 3)<sup>3</sup> = 0.

Найдите необходимое и достаточное условие для того, чтобы выражение  <i>x</i>³ + <i>y</i>³ + <i>z</i>³ + <i>kxyz</i>  делилось на  <i>x + y + z</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка