Олимпиадные задачи по теме «Методы математического анализа» для 11 класса - сложность 3 с решениями
Методы математического анализа
НазадДана пирамида <i>SA</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, основание которой – выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. Для каждого <i>i</i> = 1, 2, ..., <i>n</i> в плоскости основания построили треугольник <i>X<sub>i</sub>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>, равный треугольнику <i>SA<sub>i</sub>A</i><sub><i>i</i>+1</sub> и лежащий по ту же сторону от прямой <i>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>...
Существует ли выпуклый <i>N</i>-угольник, все стороны которого равны, а все вершины лежат на параболе <i>y = x</i>², если
а) <i>N</i> = 2011;
б) <i>N</i> = 2012?
В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.
На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.
Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру.
Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.
Докажите, что если <center><i> <img src="/storage/problem-media/109920/problem_109920_img_2.gif">+<img src="/storage/problem-media/109920/problem_109920_img_3.gif">+<img src="/storage/problem-media/109920/problem_109920_img_4.gif">=<img src="/storage/problem-media/109920/problem_109920_img_5.gif">+<img src="/storage/problem-media/109920/problem_109920_img_6.gif">+<img src="/storage/problem-media/109920/problem_109920_img_7.gif">=
<img src="/storage/problem-media/109920/problem_109920_img_8.gif">+<img src="/storage/problem-media/109920/problem_109920_img_9.gif">+<img src="/storage/problem-media/109920/problem_109920_img_10.gif">
<...
Назовем медианой системы 2<i> n </i>точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2<i> n </i>точек, никакие три из которых не лежат на одной прямой?
Какое наибольшее конечное число корней может иметь уравнение <center><i>
|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,
</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?
Пусть<i> α </i>,<i> β </i>,<i> γ </i>,<i> τ </i>– такие положительные числа, что при всех<i> x </i> <center><i>
sinα x+ sinβ x= sinγ x+ sinτ x.
</i></center> Докажите, что<i> α=γ </i>или<i> α=τ </i>.
Докажите, что для любого натурального числа <i>n</i> > 10000 найдётся такое натуральное число <i>m</i>, представимое в виде суммы двух квадратов, что
0 < <i>m – n</i> < 3 <img align="absmiddle" src="/storage/problem-media/109761/problem_109761_img_2.gif"> .
Многочлен <i>P</i>(<i>x</i>) = <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> имеет три различных действительных корня, а многочлен <i>P</i>(<i>Q</i>(<i>x</i>)), где <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>x</i> + 2001, действительных корней не имеет. Докажите, что <i>P</i>(2001) > <sup>1</sup>/<sub>64</sub>.
Пусть –1 < <i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < ... < <i>x<sub>n</sub></i> < 1 и <img align="absmiddle" src="/storage/problem-media/109716/problem_109716_img_2.gif">
Докажите, что если <i>y</i><sub>1</sub> < <i>y</i><sub>2</sub> < ... < <i>y<sub>n</sub></i>, то <img align="absmiddle" src="/storage/problem-media/109716/problem_109716_img_3.gif">
Найдите все бесконечные ограниченные последовательности натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., для всех членов которых, начиная с третьего, выполнено <div align="center"><img src="/storage/problem-media/109692/problem_109692_img_2.gif"></div>
Докажите, что если(<i>x+<img src="/storage/problem-media/109565/problem_109565_img_2.gif"></i>)(<i>y+<img src="/storage/problem-media/109565/problem_109565_img_3.gif"></i>)<i>=</i>1, то<i> x+y=</i>0.
Существует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>, <i>n</i> > 1, положительны?
Дан многочлен <i>P</i>(<i>x</i>) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., такая, что <i>P</i>(<i>a</i><sub>1</sub>) = 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub> и т. д. Докажите, что не все числа в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... различны.
Пусть <i>P</i>(<i>x</i>) – многочлен со старшим коэффициентом 1, а последовательность целых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... такова, что <i>P</i>(<i>a</i><sub>1</sub>)= 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub> и т. д. Числа в последовательности не повторяются. Какую степень может иметь <i>P</i>(<i>x</i>)?
Дан многочлен <i>P</i>(<i>x</i>) с действительными коэффициентами. Бесконечная последовательность различных натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... такова, что
<i>P</i>(<i>a</i><sub>1</sub>) = 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>, и т.д. Какую степень может иметь <i>P</i>(<i>x</i>)?
Существует ли такой невыпуклый многогранник, что из некоторой точки <i>М</i>, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)
На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.
Дан выпуклый многоугольник и точка<i>O</i>внутри него. Любая прямая, проходящая через точку<i>O</i>, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и<i>O</i>— центр симметрии.
Из двух треугольных пирамид с общим основанием одна лежит внутри другой. Может ли быть сумма ребер внутренней пирамиды больше суммы ребер внешней?
В ряд стоят 9 вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?<img src="/storage/problem-media/67304/problem_67304_img_2.png">Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.
Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?