Олимпиадные задачи по теме «Геометрические методы» для 9 класса - сложность 1-3 с решениями
Геометрические методы
НазадПрямая пересекает график функции <i>y = x</i>² в точках с абсциссами <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>, а ось абсцисс – в точке с абсциссой <i>x</i><sub>3</sub>. Докажите, что <img align="absmiddle" src="/storage/problem-media/116488/problem_116488_img_2.gif"> .
В четырёхугольнике<i> ABCD </i>найдите такую точку<i> E </i>, для которой отношение площадей треугольников<i> EAB </i>и<i> ECD </i>было равно 1:2, а треугольников<i> EAD </i>и<i> EBC </i>— 3:4, если известны координаты всех его вершин:<i> A</i>(<i>-</i>2<i>;-</i>4),<i> B</i>(<i>-</i>2<i>;</i>3),<i> C</i>(4<i>;</i>6),<i> D</i>(4<i>;-</i>1).
В четырёхугольнике<i> PQRS </i>найдите такую точку<i> T </i>, для которой отношение площадей треугольников<i> RQT </i>и<i> PST </i>было равно 2:1, а треугольников<i> SRT </i>и<i> PQT </i>— 1:5, если известны координаты всех его вершин:<i> P</i>(6<i>;-</i>2),<i> Q</i>(3<i>;</i>4),<i> R</i>(<i>-</i>3<i>;</i>4),<i> S</i>(0<i>;-</i>2).
Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.
Найдите сумму абсцисс точек пересечения этих прямых с прямой <i>y</i> = 100 – <i>x</i>.
Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.
В угол <i>A</i>, равный α, вписана окружность, касающаяся его сторон в точках <i>B</i> и <i>C</i>. Прямая, касающаяся окружности в некоторой точке <i>M</i>, пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>Р</i> и <i>Q</i> соответственно. При каких α может быть выполнено неравенство <i>S<sub>PAQ</sub> < S<sub>BMC</sub></i>?
На плоскости дан квадрат<i> ABCD </i>. Найдите минимум частного<i> <img align="absmiddle" src="/storage/problem-media/115718/problem_115718_img_2.gif"> </i>, где<i> O </i>— произвольная точка плоскости.
Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).
Чему равен периметр внутреннего пятиугольника <i>ABCDE</i>, если длина исходной ломаной равна 1? <div align="center"><img src="/storage/problem-media/115687/problem_115687_img_2.gif"></div>
Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?
В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?
Дан набор из<i> n></i>2векторов. Назовем вектор набора длинным, если его длина не меньше длины суммы остальных векторов набора. Докажите, что если каждый вектор набора– длинный, то сумма всех векторов набора равна нулю.
Укажите все выпуклые четырёхугольники, у которых суммы синусов противолежащих углов равны.
В окружность вписаны три правильных многоугольника, число сторон каждого последующего вдвое больше, чем у предыдущего. Площади первых двух равны <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub>. Найдите площадь третьего.
Два правильных многоугольника с периметрами <i>a</i> и <i>b</i> описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.
Вася постоял некоторое время на остановке. За это время проехал один автобус и два трамвая. Через некоторое время на эту же остановку пришёл Шпион. Пока он там сидел, проехало 10 автобусов. Какое минимальное число трамваев могло проехать за это время? И автобусы, и трамваи ходят с равными интервалами, причём автобусы ходят с интервалом 1 час.
Докажите, что если<i> α </i>,<i> β </i>и<i> γ </i>– углы остроугольного треугольника, то<i> sinα + sinβ + sinγ > </i>2.
На плоскости даны точки<i> A</i>(<i>-</i>1<i>;</i>2),<i> B</i>(<i>-</i>2<i>;</i>1),<i> C</i>(<i>-</i>3<i>;-</i>3),<i> D</i>(0<i>;</i>0). Они являются вершинами выпуклого четырёхугольника<i> ABCD </i>. В каком отношении точка пересечения его диагоналей делит диагональ<i> AC </i>?
На плоскости даны точки<i> A</i>(1<i>;</i>2),<i> B</i>(2<i>;</i>1),<i> C</i>(3<i>;-</i>3),<i> D</i>(0<i>;</i>0). Они являются вершинами выпуклого четырёхугольника<i> ABCD </i>. В каком отношении точка пересечения его диагоналей делит диагональ<i> AC </i>?
Найдите все углы<i> α </i>, для которых набор чисел<i> sinα </i>,<i> sin</i>2<i>α </i>,<i> sin</i>3<i>α </i>совпадает с набором<i> cosα </i>,<i> cos</i>2<i>α </i>,<i> cos</i>3<i>α </i>.
Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?
Все вершины треугольника<i> ABC </i>лежат внутри квадрата<i> K </i>. Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника<i> ABC </i>, то хотя бы одна из полученных трех точек окажется внутри<i> K </i>.
На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)
Показать, что<i> sin </i>36<i><sup>o</sup>=</i>1/4<i><img src="/storage/problem-media/109145/problem_109145_img_2.gif"> </i>.
На плоскости даны точки<i> A </i>и<i> B </i>. Доказать, что множество всех точек<i> M </i>, удалённых от<i> A </i>в 3 раза больше, чем от<i> B </i>, есть окружность.
Найдите угол между скрещивающимися медианами двух граней правильного тетраэдра.