Олимпиадные задачи по теме «Геометрические методы» для 9 класса

Прямая пересекает график функции  <i>y = x</i>²  в точках с абсциссами <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>, а ось абсцисс – в точке с абсциссой <i>x</i><sub>3</sub>. Докажите, что   <img align="absmiddle" src="/storage/problem-media/116488/problem_116488_img_2.gif"> .

В четырёхугольнике<i> ABCD </i>найдите такую точку<i> E </i>, для которой отношение площадей треугольников<i> EAB </i>и<i> ECD </i>было равно 1:2, а треугольников<i> EAD </i>и<i> EBC </i>— 3:4, если известны координаты всех его вершин:<i> A</i>(<i>-</i>2<i>;-</i>4),<i> B</i>(<i>-</i>2<i>;</i>3),<i> C</i>(4<i>;</i>6),<i> D</i>(4<i>;-</i>1).

В четырёхугольнике<i> PQRS </i>найдите такую точку<i> T </i>, для которой отношение площадей треугольников<i> RQT </i>и<i> PST </i>было равно 2:1, а треугольников<i> SRT </i>и<i> PQT </i>— 1:5, если известны координаты всех его вершин:<i> P</i>(6<i>;-</i>2),<i> Q</i>(3<i>;</i>4),<i> R</i>(<i>-</i>3<i>;</i>4),<i> S</i>(0<i>;-</i>2).

Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.

Найдите сумму абсцисс точек пересечения этих прямых с прямой  <i>y</i> = 100 – <i>x</i>.

Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.

В угол <i>A</i>, равный α, вписана окружность, касающаяся его сторон в точках <i>B</i> и <i>C</i>. Прямая, касающаяся окружности в некоторой точке <i>M</i>, пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>Р</i> и <i>Q</i> соответственно. При каких α может быть выполнено неравенство <i>S<sub>PAQ</sub> < S<sub>BMC</sub></i>?

На плоскости дан квадрат<i> ABCD </i>. Найдите минимум частного<i> <img align="absmiddle" src="/storage/problem-media/115718/problem_115718_img_2.gif"> </i>, где<i> O </i>— произвольная точка плоскости.

Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).

Чему равен периметр внутреннего пятиугольника <i>ABCDE</i>, если длина исходной ломаной равна 1? <div align="center"><img src="/storage/problem-media/115687/problem_115687_img_2.gif"></div>

На плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?

Дан набор из<i> n></i>2векторов. Назовем вектор набора длинным, если его длина не меньше длины суммы остальных векторов набора. Докажите, что если каждый вектор набора– длинный, то сумма всех векторов набора равна нулю.

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.

  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?

  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?

  в) Могут ли длины отрезков равняться 4, 4 и 3?

Укажите все выпуклые четырёхугольники, у которых суммы синусов противолежащих углов равны.

В окружность вписаны три правильных многоугольника, число сторон каждого последующего вдвое больше, чем у предыдущего. Площади первых двух равны <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub>. Найдите площадь третьего.

Два правильных многоугольника с периметрами <i>a</i> и <i>b</i> описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.

Игрок на компьютере управляет лисой, охотящейся за двумя зайцами. В вершине<i> A </i>квадрата<i> ABCD </i>находится нора: если в нее, в отсутствие лисы, попадает хотя бы один заяц, то игра проиграна. Лиса ловит зайца, как только оказывается с ним в одной точке (возможно, в точке<i> A </i>). Вначале лиса сидит в точке<i> C </i>, а зайцы – в точках<i> B </i>и<i> D </i>. Лиса бегает повсюду со скоростью не больше<i> v </i>, а зайцы – по лучам<i> AB </i>и<i> AD </i>со скоростью не больше 1. При каких значениях<i> v </i>лиса сможет поймать обоих зайцев?

Вася постоял некоторое время на остановке. За это время проехал один автобус и два трамвая. Через некоторое время на эту же остановку пришёл Шпион. Пока он там сидел, проехало 10 автобусов. Какое минимальное число трамваев могло проехать за это время? И автобусы, и трамваи ходят с равными интервалами, причём автобусы ходят с интервалом 1 час.

Докажите, что если<i> α </i>,<i> β </i>и<i> γ </i>– углы остроугольного треугольника, то<i> sinα + sinβ + sinγ > </i>2.

На плоскости даны точки<i> A</i>(<i>-</i>1<i>;</i>2),<i> B</i>(<i>-</i>2<i>;</i>1),<i> C</i>(<i>-</i>3<i>;-</i>3),<i> D</i>(0<i>;</i>0). Они являются вершинами выпуклого четырёхугольника<i> ABCD </i>. В каком отношении точка пересечения его диагоналей делит диагональ<i> AC </i>?

На плоскости даны точки<i> A</i>(1<i>;</i>2),<i> B</i>(2<i>;</i>1),<i> C</i>(3<i>;-</i>3),<i> D</i>(0<i>;</i>0). Они являются вершинами выпуклого четырёхугольника<i> ABCD </i>. В каком отношении точка пересечения его диагоналей делит диагональ<i> AC </i>?

Каждую вершину выпуклого четырехугольника площади<i> S </i>отразили симметрично относительно диагонали, не содержащей эту вершину. Обозначим площадь получившегося четырехугольника через<i> S' </i>. Докажите, что<i> <img src="/storage/problem-media/110176/problem_110176_img_2.gif"><</i>3.

На плоскости отмечено<i> N<img src="/storage/problem-media/110154/problem_110154_img_2.gif"> </i>3различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более<i> n </i>различных расстояний. Докажите, что<i> N<img src="/storage/problem-media/110154/problem_110154_img_3.gif"> </i>(<i>n+</i>1)<i><sup>2</sup> </i>.

Найдите все углы<i> α </i>, для которых набор чисел<i> sinα </i>,<i> sin</i>2<i>α </i>,<i> sin</i>3<i>α </i>совпадает с набором<i> cosα </i>,<i> cos</i>2<i>α </i>,<i> cos</i>3<i>α </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка