Олимпиадные задачи по теме «Стереометрия» для 11 класса - сложность 3-4 с решениями
Стереометрия
НазадВ кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников. Найдите длину отрезка, по которому эти сечения пересекаются.
а) Внутри сферы находится некоторая точка <i>A</i>. Через <i>A</i> провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках. Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.б) Внутри сферы находится икосаэдр, его центр <i>A</i> не обязательно совпадает с центром сферы. Лучи, выпущенные из <i>A</i> в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.
Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.
Дана пирамида <i>SA</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, основание которой – выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. Для каждого <i>i</i> = 1, 2, ..., <i>n</i> в плоскости основания построили треугольник <i>X<sub>i</sub>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>, равный треугольнику <i>SA<sub>i</sub>A</i><sub><i>i</i>+1</sub> и лежащий по ту же сторону от прямой <i>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>...
Внутри выпуклого многогранника выбрана точка <i>P</i> и несколько прямых <i>l</i><sub>1</sub>, ..., <i>l<sub>n</sub></i>, проходящих через <i>P</i> и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых <i>l</i><sub>1</sub>, ..., <i>l<sub>n</sub></i>, которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.
<i>H</i> – точка пересечения высот <i>AA'</i> и <i>BB'</i> остроугольного треугольника <i>ABC</i>. Прямая, перпендикулярная <i>AB</i>, пересекает эти высоты в точках <i>D</i> и <i>E</i>, а сторону <i>AB</i> – в точке <i>P</i>. Докажите, что ортоцентр треугольника <i>DEH</i> лежит на отрезке <i>CP</i>.
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.). <div align="center"><img src="/storage/problem-media/116574/problem_116574_img_2.gif"></div>Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?
В кубе <i>ABCDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub>, ребро которого равно 6, точки <i>M</i> и <i>N</i> – середины рёбер <i>AB</i> и <i>B</i><sub>1</sub><i>C</i><sub>1</sub> соответственно, а точка <i>K</i> расположена на ребре <i>DC</i> так, что
<i>DK</i> = 2<i>KC</i>. Найдите
а) расстояние от точки <i>N</i> до прямой <i>AK</i>;
б) расстояние между прямыми <i>MN</i> и <i>AK</i>;
в) расстояние от точки <i>A</i><sub>1</sub> до плоскости треуго...
В пространстве даны точки<i> A</i>(<i>-</i>1<i>;</i>2<i>;</i>0),<i> B</i>(5<i>;</i>2<i>;-</i>1),<i> C</i>(2<i>;-</i>1<i>;</i>4)и<i> D</i>(<i>-</i>2<i>;</i>2<i>;-</i>1). Найдите: а) расстояние от вершины<i> D </i>тетраэдра<i> ABCD </i>до точки пересечения медиан основания<i> ABC </i>; б) уравнение плоскости<i> ABC </i>; в) высоту тетраэдра, проведённую из вершины<i> D </i>; г) угол между прямыми<i> BD </i>и<i> AC </i>; д) угол между гранями<i> ABC </i>и<i> ACD </i>; е) расстояние между прямыми<i> BD </i>и<...
Дана четырёхугольная пирамида, в которую можно вписать сферу, причём центр этой сферы лежит на высоте пирамиды. Докажите, что в основания пирамиды можно вписать окружность.
Все грани треугольной пирамиды — равные равнобедренные треугольники, а высота пирамиды совпадает с высотой одной из её боковых граней. Найдите объём пирамиды, если расстояние между наибольшими противоположными ребрами равно 1.
В треугольной пирамиде каждое боковое ребро равно 1, а боковые грани равновелики. Найдите объём пирамиды, если известно, что один из двугранных углов при основании — прямой.
Сторона основания<i> ABC </i>пирамиды<i> TABC </i>равна 4, боковое ребро<i> TA </i>перпендикулярно плоскости основания. Найдите площадь сечения пирамиды плоскостью, проходящей через середины рёбер<i> AC </i>и<i> BT </i>параллельно медиане<i> BD </i>грани<i> BCT </i>, если известно, что расстояние от вершины<i> T </i>до этой плоскости равно<i> <img align="absmiddle" src="/storage/problem-media/116322/problem_116322_img_2.gif"> </i>.
Точка<i> O </i>расположена в сечении<i> BDD'B' </i>прямоугольного параллелепипеда<i> ABCDA'B'C'D' </i>размером4<i>× </i>6<i>× </i>9так, что<i> <img align="absmiddle" src="/storage/problem-media/116321/problem_116321_img_2.gif"> ODA + <img align="absmiddle" src="/storage/problem-media/116321/problem_116321_img_2.gif"> ODC + <img align="absmiddle" src="/storage/problem-media/116321/problem_116321_img_2.gif"> ODD' = </i>180<i><sup>o</sup> </i>. Сфера с центром в точке<i> O </i>касается плоскостей<i> A'B'C' </i>,<i> DD'A </i>и не им...
Точка<i> O </i>расположена в сечении<i> BB'D'D </i>прямоугольного параллелепипеда<i> ABCDA'B'C'D' </i>размером3<i>× </i>4<i>× </i>8так, что<i> <img align="absmiddle" src="/storage/problem-media/116320/problem_116320_img_2.gif"> OBA + <img align="absmiddle" src="/storage/problem-media/116320/problem_116320_img_2.gif"> OBC + <img align="absmiddle" src="/storage/problem-media/116320/problem_116320_img_2.gif"> OBB' = </i>180<i><sup>o</sup> </i>. Сфера с центром в точке<i> O </i>касается плоскостей<i> A'B'C' </i>,<i> BB'C </i>и не им...
Точка<i> O </i>расположена в сечении<i> ACC'A' </i>прямоугольного параллелепипеда<i> ABCDA'B'C'D' </i>размером2<i>× </i>3<i>× </i>6так, что<i> <img align="absmiddle" src="/storage/problem-media/116319/problem_116319_img_2.gif"> OCB + <img align="absmiddle" src="/storage/problem-media/116319/problem_116319_img_2.gif"> OCD + <img align="absmiddle" src="/storage/problem-media/116319/problem_116319_img_2.gif"> OCC' = </i>180<i><sup>o</sup> </i>. Сфера с центром в точке<i> O </i>касается плоскостей<i> A'B'C' </i>,<i> CC'D </i>и не им...
Точка<i> O </i>расположена в сечении<i> AA'C'C </i>прямоугольного параллелепипеда<i> ABCDA'B'C'D' </i>размером2<i>× </i>6<i>× </i>9так, что<i> <img align="absmiddle" src="/storage/problem-media/116318/problem_116318_img_2.gif"> OAB + <img align="absmiddle" src="/storage/problem-media/116318/problem_116318_img_2.gif"> OAD + <img align="absmiddle" src="/storage/problem-media/116318/problem_116318_img_2.gif"> OAA' = </i>180<i><sup>o</sup> </i>. Сфера с центром в точке<i> O </i>касается плоскостей<i> A'B'C' </i>,<i> AA'B </i>и не им...
Боковые стороны <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i> являются соответственно хордами окружностей ω<sub>1</sub> и ω<sub>2</sub>, касающихся друг друга внешним образом. Градусные меры касающихся дуг <i>AB</i> и <i>CD</i> равны α и β. Окружности ω<sub>3</sub> и ω<sub>4</sub> также имеют хорды <i>AB</i> и <i>CD</i> соответственно. Их дуги <i>AB</i> и <i>CD</i>, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω<sub>3</sub> и ω<sub>4</sub> тоже касаются.
От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.
а) Могут ли спилы быть подобными, но не равными треугольниками?
б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?
По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.
Рассматриваются ортогональные проекции данного правильного тетраэдра с единичным ребром на всевозможные плоскости. Какое наибольшее значение может принимать радиус круга, содержащегося в такой проекции?
Oснованием пирамиды служит выпуклый четырехугольник. Oбязательно ли существует сечение этой пирамиды, не пересекающее основание и являющееся вписанным четырехугольником?
B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.
Докажите, что суммы площадей её противоположных боковых граней равны.