Олимпиадные задачи по теме «Дроби» - сложность 3 с решениями
Дроби
НазадНа доске написано натуральное число. Если на доске написано число <i>x</i>, то можно дописать на нее число 2<i>x</i> + 1 или <sup><i>x</i></sup>/<sub><i>x</i>+2</sub>. В какой-то момент выяснилось, что на доске присутствует число 2008. Докажите, что оно там было с самого начала.
На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.
В бесконечной последовательности (<i>x<sub>n</sub></i>) первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub> при всех натуральных <i>n</i>.
Докажите, что в этой последовательности есть целое число.
Даны положительные рациональные числа <i>a, b</i>. Один из корней трёхчлена <i>x</i>² – <i>ax + b</i> – рациональное число, в несократимой записи имеющее вид <sup><i>m</i></sup>/<sub><i>n</i></sub>. Докажите, что знаменатель хотя бы одного из чисел <i>a</i> и <i>b</i> (в несократимой записи) не меньше <i>n</i><sup>2/3</sup>.
Для некоторых натуральных чисел <i>a, b, c</i> и <i>d</i> выполняются равенства <i><sup>a</sup>/<sub>c</sub> = <sup>b</sup>/<sub>d</sub></i> = <sup><i>ab</i>+1</sup>/<sub><i>cd</i>+1</sub>. Докажите, что <i>a = c</i> и <i>b = d</i>.
Имеется 40 одинаковых газовых баллонов, значения давления газа в которых нам неизвестны и могут быть различны. Разрешается соединять любые баллоны друг с другом в количестве, не превосходящем заданного натурального числа <i>k</i>, а затем разъединять их; при этом давление газа в соединяемых баллонах устанавливается равным среднему арифметическому давлений в них до соединения. При каком наименьшем <i>k</i> существует способ уравнивания давлений во всех 40 баллонах независимо от первоначального распределения давлений в баллонах?
Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены <i>запрещёнными</i>. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.
Сумма и произведение двух чисто периодических десятичных дробей – чисто периодические дроби с периодом <i>T</i>.
Докажите, что исходные дроби имеют периоды не больше <i>T</i>.
Назовём натуральные числа <i>похожими</i>, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.
Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй – на треть, третий – на четверть, четвёртый – на ⅕, пятый – на ⅛, шестой – на <sup>1</sup>/<sub>9</sub>, и седьмой – на <sup>1</sup>/<sub>10</sub>. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным а) на <sup>1</sup>/<sub>12</sub>; б) на ⅙?
В числе <i>a</i> = 0,12457... <i>n</i>-я цифра после запятой равна цифре слева от запятой в числе <img align="absmiddle" src="/storage/problem-media/109196/problem_109196_img_2.gif"> Докажите, что α – иррациональное число.
Пусть <img width="120" height="41" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_2.gif"> = <img width="23" height="47" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_3.gif">, где <img width="23" height="47" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_3.gif"> – несократимая дробь.
Докажите, что неравенство <i>b</i><sub><i>n</i>+1</sub> < <i>b<sub>n</sub></i> выполнено для бесконечного числа натуральных <i>n</i>.
а) Существуют ли такие натуральные числа <i>a, b, c</i>, что из двух чисел <sup><i>a</i></sup>/<i><sub>b</sub> + <sup>b</sup></i>/<i><sub>c</sub> + <sup>c</sup></i>/<sub><i>a</i></sub> и <sup><i>b</i></sup>/<i><sub>a</sub> + <sup>c</sup></i>/<i><sub>b</sub> + <sup>a</sup></i>/<sub><i>c</i></sub> ровно одно – целое? б) Докажите, что если они оба целые, то <i>a = b = c</i>.
Рассматривается последовательность, <i>n</i>-й член которой есть первая цифра числа 2<sup><i>n</i></sup>.
Докажите, что количество различных "слов" длины 13 – наборов из 13 подряд идущих цифр – равно 57.
Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями: <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|, причём 0 ≤ <i>x</i><sub>1</sub> ≤ 1.
а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.
б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?
<i>n</i> школьников хотят разделить поровну <i>m</i> одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
а) При каких <i>n</i> это возможно, если <i>m</i> = 9?
б) При каких <i>n</i> и <i>m</i> это возможно?
На доске выписаны числа 1, ½, ⅓, ..., <sup>1</sup>/<sub>100</sub>. Выбираем из написанных на доске два произвольных числа <i>a</i> и <i>b</i>, стираем их и пишем на доску число
<i>a + b + ab</i>. Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.
Сколько существует таких пар натуральных чисел (<i>m, n</i>), каждое из которых не превышает 1000, что <img align="absmiddle" src="/storage/problem-media/98049/problem_98049_img_2.gif">
Прибор для сравнения чисел log<i><sub>a</sub>b</i> и log<i><sub>c</sub>d</i> (<i>a, b, c, d</i> > 1) работает по правилам: если <i>b > a</i> и <i>d > c</i>, то он переходит к сравнению чисел log<i><sub>a</sub><sup>b</sup></i>/<sub><i>a</i></sub> и log<i><sub>c</sub><sup>d</sup></i>/<sub><i>c</i></sub> если <i>b < a</i> и <i>d < c</i>, то он переходит к сравнению чисел log<i><sub>d</sub>c</i> и log<i><sub>b</sub>a</i>; если (<i>b − a</i>)(<i>d − c</i>) ≤ 0, т...
Найти все такие натуральные <i>n</i>, для которых числа <sup>1</sup>/<sub><i>n</i></sub> и <sup>1</sup>/<sub><i>n</i>+1</sub> выражаются конечными десятичными дробями.
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят <i>n</i>, расположенные в порядке возрастания (<i>ряд Фарея</i>). Пусть <sup><i>a</i></sup>/<sub><i>b</i></sub> и <sup><i>c</i></sup>/<sub><i>d</i></sub> – какие-то два соседних числа (дроби несократимы). Доказать, что |<i>bc – ad</i>| = 1.
Пусть <i>K</i>(<i>x</i>) равно числу таких несократимых дробей <sup><i>a</i></sup>/<sub><i>b</i></sub>, что <i>a < x</i> и <i>b < x</i> (<i>a</i> и <i>b</i> – натуральные числа). Например, <i>K</i>(<sup>5</sup>/<sub>2</sub>) = 3 (дроби 1, 2, ½).
Вычислить сумму <i>K</i>(100) + <i>K</i>(<sup>100</sup>/<sub>2</sub>) + <i>K</i>(<sup>100</sup>/<sub>3</sub>) + ... + <i>K</i>(<sup>100</sup>/<sub>99</sub>) + <i>K</i>(<sup>100</sup>/<sub>100</sub>).
В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?
В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с третьего знака после запятой (то есть взято приближение α с недостатком с точностью до 0, 01). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?
Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение: <img align="MIDDLE" src="/storage/problem-media/76542/problem_76542_img_2.gif">