Олимпиадные задачи из источника «Заочная олимпиада по теории вероятностей и статистике» - сложность 2 с решениями
Заочная олимпиада по теории вероятностей и статистике
НазадСогласно одной неправдоподобной легенде, Коши и Буняковский очень любили по вечерам играть в дартс. Но мишень у них была необычная – секторы на ней были неравные, так что вероятности попасть в разные секторы были не одинаковы. Однажды Коши бросил дротик и попал в мишень. Следующим бросает Буняковский. Что более вероятно: что Буняковский попадёт в тот же сектор, в который попал Коши, или что он попадёт в следующий сектор по часовой стрелке? <div align="center"><img src="/storage/problem-media/66057/problem_66057_img_2.gif"></div>
Имеется <i>n</i> случайных векторов вида (<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, <i>y</i><sub>3</sub>), где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор <i><b>a</b></i> с координатами (<i>Y</i><sub>1</sub>, <i>Y</i><sub>2</sub>, <i>Y</i><sub>3</sub>).
а) Найдите математическое ожидание случайной величины <i><b>a</b></i>².
б) Докажите, что <img align="absmiddle" src="/storage/problem-media/66053/problem_66053_img_2.gif">
По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему). <div align="center"><img src="/storage/problem-media/66051/problem_66051_img_2.gif"></div> Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут. По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям: - поезд, идущий против часо...
На бал пришли <i>n</i> семейных пар. В каждой паре муж и жена абсолютно одинакового роста, но двух пар одного роста нет. Начинает звучать вальс, и все пришедшие разбиваются случайным образом на пары: каждый кавалер танцует со случайно выбранной дамой. Найдите математическое ожидание случайной величины <i>X</i> "Число кавалеров, которые ниже своей партнёрши".
В турнире участвуют 100 борцов, все разной силы. В любом поединке двух борцов всегда побеждает тот, кто сильнее. В первом туре борцы разбились на случайные пары и провели поединки. Для второго тура борцы ещё раз разбиваются на случайные пары соперников (может случиться, что какие-то пары повторятся). Приз получает тот, кто выиграет оба поединка. Найдите: а) наименьшее возможное число призёров турнира; б) математическое ожидание числа призеров турнира.
На антарктической станции <i>n</i> полярников, все разного возраста. С вероятностью <i>p</i> между каждыми двумя полярниками завязываются дружеские отношения, независимо от других симпатий или антипатий. Когда зимовка заканчивается и наступает пора разъезжаться по домам, в каждой паре друзей старший даёт младшему дружеский совет. Найдите математическое ожидание числа тех, кто так и не получил ни одного дружеского совета.
На берёзе сидели белые и чёрные вороны – всего их было 50. Белые точно были, а чёрных было не меньше, чем белых. На дубе тоже сидели белые и чёрные вороны, и было их всего 50. На дубе чёрных тоже было не меньше, чем белых или столько же, а может быть, даже на одну меньше. Одна случайная ворона перелетела с берёзы на дуб, а через некоторое время другая (может быть, та же самая) случайная ворона перелетела с дуба на берёзу. Что более вероятно: что количество белых ворон на берёзе стало таким же, как было сначала, или что оно изменилось?
В школьном совете выбирают председателя. Кандидатов четверо: А, Б, В и Г. Предложена специальная процедура – каждый член совета должен записать на специальном листке кандидатов в порядке своих предпочтений. Например, АВГБ значит, что член совета на первое место ставит А, не очень возражает против В и считает, что он лучше, чем Г, зато меньше всего хотел бы видеть председателем Б. Первое место даёт кандидату 3 очка, второе – 2 очка, третье – 1 очко, а четвёртое – 0 очков. После сбора всех листков избирательная комиссия суммирует очки у каждого кандидата. Победит тот, у кого наибольшая сумма очков.
После голосования выяснилось, что В (который набрал меньше всех очков) снимает свою кандидатуру в связи с переходом в другую школу. Заново голосовать не стали, а просто вычеркнули В из все...
В Солнечной долине 10 посёлков. Однажды статистики долины провели исследование численности жителей в посёлках. Обнаружили следующее.
1. Число жителей в любых двух посёлках долины отличается не более чем на 100 человек.
2. В посёлке Знойное ровно 1000 жителей, что превышает среднюю численность населения посёлков долины на 90 человек.
Сколько жителей в посёлке Радужный, который также расположен в Солнечной долине?
Когда Рассеянному Учёному приходит в голову гениальная идея, он записывает её на листке бумаги, но тут же понимает, что идея не гениальная, комкает лист и кидает под стол, где стоят две мусорные корзины. Учёный промахивается мимо первой корзины с вероятностью <i>p</i> > 0,5, и с такой же вероятностью он промахивается мимо второй. За утро Учёный бросил под стол пять скомканных гениальных идей. Найдите вероятность того, что в каждой корзине оказалось хотя бы по одной из утренних идей.
В торговом центре три автомата продают кофе. В течение дня первый автомат ломается с вероятностью 0,4, второй – с вероятностью 0,3. Каждый вечер приходит механик Иванов и чинит все сломанные автоматы. Однажды Иванов написал в отчете, что математическое ожидание поломок в неделю равно 12. Докажите, что Иванов преувеличивает.
В классе у Марии Ивановны прошёл ежегодный тест по английскому языку. Оказалось, что в обеих группах А и Б средний балл понизился по сравнению с прошлым годом (см. таблицу). <div align="center"><img src="/storage/problem-media/66039/problem_66039_img_2.gif"></div>Мария Ивановна должна писать отчет, но знает, что директор школы будет недоволен, поскольку считает, что средний балл должен каждый год расти. Баллы менять нельзя, но Мария Ивановна может переводить учеников из одной группы в другую. Может ли она сделать так, что средний балл в каждой группе окажется выше, чем в прошлом году?
Горлум загадывает Бильбо девять загадок. Найдите самое вероятное из событий:
<i>A</i> = {Бильбо отгадает больше четырёх загадок},
<i>B</i> = {Бильбо отгадает не меньше четырёх загадок},
<i>C</i> = {Бильбо отгадает от четырёх до восьми загадок},
<i>D</i> = {Бильбо не отгадает меньше семи загадок}.
Имеется резинка и стеклянные шарики-бусины: четыре одинаковых красных, две одинаковых синих и две одинаковых зелёных. Нужно все восемь бусин нанизать на резинку последовательно, чтобы получился браслет. Сколько различных браслетов можно составить так, чтобы бусины одного цвета не оказались рядом? (Считайте, что застёжки нет, а узелок на резинке незаметен.)
В классе не больше 40 человек, и среди них есть те, кого зовут Коля. Вероятность того, что случайно выбранный ученик выше всех Коль, равна <sup>2</sup>/<sub>5</sub>, а вероятность того, что случайно выбранный ученик ниже всех Коль, равна <sup>3</sup>/<sub>7</sub>. Какое наибольшее количество Коль может быть в классе?
Найдите медиану набора длин: 2 м 30 см, 250 мм, 0,02 км, 0,002 км, 2700 см, 2800 мм, 240 см.
Игральный кубик симметричен, но устроен необычно: на двух гранях по два очка, а на остальных четырёх – по одному. Сергей бросил кубик несколько раз, и в результате сумма всех выпавших очков оказалась 3. Найдите вероятность того, что при каком-то броске выпала грань с 2 очками.
Билет на электричку стоит 50 рублей, а штраф за безбилетный проезд – 450 рублей. Если безбилетник (заяц) попадается контролёру, то оплачивает и штраф, и стоимость билета. Известно, что контролёр встречается в среднем один раз на 10 поездок. Заяц ознакомился с основами теории вероятностей и решил придерживаться стратегии, которая делает математическое ожидание расходов наименьшим возможным. Как ему поступать: покупать билет каждый раз, не покупать никогда или бросать монетку – покупать билет или нет?
Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.
Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки.
Найдите вероятность того, что среди этих четырёх фишек найдутся три, которые стоят в один ряд по вертикали, по горизонтали или по диагонали.
ЕГЭ по математике в волшебной стране Оз устроено следующим образом. Каждую работу независимо друг от друга проверяют три преподавателя, и каждый ставит за каждую задачу 0 или 1 балл. Затем компьютер находит среднее арифметическое оценок за эту задачу и округляет его до ближайшего целого. Затем баллы, полученные за все задачи, суммируются. Случилось так, что в одной из работ каждый из трёх экспертов поставил по 1 баллу за 3 задачи и 0 баллов за все прочие задачи. Найдите наибольший возможный суммарный балл за эту работу.
На конференцию приехали 18 учёных, из которых ровно 10 знают сногсшибательную новость. Во время перерыва (кофе-брейка) все учёные разбиваются на случайные пары, и в каждой паре каждый, кто знает новость, рассказывает эту новость другому, если тот её ещё не знал.
а) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 13.
б) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 14.
в) Обозначим буквой <i>X</i> количество учёных, которые знают сногсшибательную новость после кофе-брейка. Найдите математическое ожидание <i>X</i>.
На знакомом нам заводе вырезают металлические диски диаметром 1 м. Известно, что диск диаметром ровно 1 м весит ровно 100 кг. При изготовлении возникает ошибка измерения, и поэтому стандартное отклонение радиуса составляет 10 мм. Инженер Сидоров считает, что стопка из 100 дисков в среднем будет весить 10000 кг. На сколько ошибается инженер Сидоров?
В треугольнике <i>ABC</i> угол <i>A</i> равен 40°. Треугольник случайным образом бросают на стол.
Найдите вероятность того, что вершина <i>A</i> окажется восточнее двух других вершин.
К юбилею Санкт-Петербургских математических олимпиад монетный двор отчеканил три юбилейные монеты. Одна монета получилась правильно, у второй монеты на обеих сторонах оказалось два орла, а у третьей обе стороны – решки. Директор монетного двора не глядя выбрал одну из этих трёх монет и бросил её наудачу. Выпал орёл. Чему равна вероятность того, что на второй стороне этой монеты тоже орёл?