Олимпиадные задачи из источника «Всероссийская олимпиада по математике» для 11 класса - сложность 2-3 с решениями
На окружности отмечено 2<i>n</i> + 1 точек, делящих её на равные дуги (<i>n</i> ≥ 2). Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?
Точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> выбраны на сторонах <i>BC, CA</i> и <i>AB</i> треугольника <i>ABC</i> соответственно. Оказалось, что <i>AB</i><sub>1</sub> – <i>AC</i><sub>1</sub> = <i>CA</i><sub>1</sub> – <i>CB</i><sub>1</sub> = <i>BC</i><sub>1</sub> – <i>BA</i><sub>1</sub>. Пусть <i>O<sub>A</sub></i>, <i>O<sub>B</sub></i> и <i>O<sub>C</sub></i> – центры описанных окружностей треугольников <i>AB</i><sub>1</sub&...
Даны многочлен <i>P</i>(<i>x</i>) и такие числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, <i>b</i><sub>3</sub>, что <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> ≠ 0. Оказалось, что <i>P</i>(<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>) + <i>P</i>(<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>) = <i>P</i>(<i>a</i><sub>3<...
Дана пирамида <i>SA</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, основание которой – выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. Для каждого <i>i</i> = 1, 2, ..., <i>n</i> в плоскости основания построили треугольник <i>X<sub>i</sub>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>, равный треугольнику <i>SA<sub>i</sub>A</i><sub><i>i</i>+1</sub> и лежащий по ту же сторону от прямой <i>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>...
Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.
Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?
Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?
Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif"> Докажите, что <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.
Окружность ω, вписанная в остроугольный неравнобедренный треугольник <i>ABC</i>, касается стороны <i>BC</i> в точке <i>D</i>. Пусть точка <i>I</i> – центр окружности ω, а <i>O</i> – центр описанной окружности треугольника <i>ABC</i>. Описанная окружность треугольника <i>AID</i>, пересекает вторично прямую <i>AO</i> в точке <i>E</i>. Докажите, что длина отрезка <i>AE</i> равна радиусу окружности ω.
Пусть <i>a</i><sub>1</sub>, ..., <i>a</i><sub>10</sub> – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 20 чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>, 2<i>a</i><sub>1</sub>, 2<i>a</i><sub>2</sub>,..., 2<i>a</i><sub>10</sub> равняться 2012?
Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа <i>a</i>² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).
Даны два различных приведённых кубических многочлена <i>F</i>(<i>x</i>) и <i>G</i>(<i>x</i>). Выписали все корни уравнений <i>F</i>(<i>x</i>) = 0, <i>G</i>(<i>x</i>) = 0, <i>F</i>(<i>x</i>) = <i>G</i>(<i>x</i>). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена <i>F</i>(<i>x</i>).
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
На стороне <i>BC</i> параллелограмма <i>ABCD</i> (∠<i>A</i> < 90°) отмечена точка <i>T</i> так, что треугольник <i>ATD</i> – остроугольный. Пусть <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub> и <i>O</i><sub>3</sub> – центры описанных окружностей треугольников <i>ABT</i>, <i>DAT</i> и <i>CDT</i> соответственно (см. рисунок). <div align="center"><img src="/storage/problem-media/116647/problem_116647_img_2.gif"></div>Докажите, что ортоцентр треугольника<i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub>лежит...
Натуральные числа <i>d</i> и <i>d' > d</i> – делители натурального числа <i>n</i>. Докажите, что <i>d' > d</i> + <sup><i>d</i>²</sup>/<sub><i>n</i></sub>.
Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).
Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?
Остроугольный треугольник <i>ABC</i> вписан в окружность ω. Касательные к ω, проведённые через точки <i>B</i> и <i>C</i>, пересекают касательную к ω, проведённую через точку <i>A</i>, в точках <i>K</i> и <i>L</i> соответственно. Прямая, проведённая через <i>K</i> параллельно <i>AB</i>, пересекается с прямой, проведённой через <i>L</i> параллельно <i>AC</i>, в точке <i>P</i>. Докажите, что <i>BP = CP</i>.
2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по <i>x</i><sub>1</sub>, ..., <i>x</i><sub>2011</sub> кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по <i>y</i><sub>1</sub>, ..., <i>y</i><sub>2011</sub> кг цемента соответственно, причём
<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>2011</sub> = <i>y</i><sub>1</sub> + <i>y<...
На окружности, описанной около прямоугольника <i>ABCD</i>, выбрана точка <i>K</i>. Оказалось, что прямая <i>CK</i> пересекает отрезок <i>AD</i> в такой точке <i>M</i>, что
<i>AM</i> : <i>MD</i> = 2. Пусть <i>O</i> – центр прямоугольника. Докажите, что точка пересечения медиан треугольника <i>OKD</i> лежит на описанной окружности треугольника <i>COD</i>.
Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.
По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?
Даны натуральные числа <i>x</i> и <i>y</i> из отрезка [2, 100]. Докажите, что при некотором натуральном <i>n</i> число <i>x</i><sup>2<i><sup>n</sup></i></sup> + <i>y</i><sup>2<i><sup>n</sup></i></sup> – составное.
Сколько раз функция <i>f</i>(<i>x</i>) = cos <i>x</i> cos <sup><i>x</i></sup>/<sub>2</sub> cos <sup><i>x</i></sup>/<sub>3</sub> ... cos <sup><i>x</i></sup>/<sub>2009</sub> меняет знак на отрезке [0, <sup>2009π</sup>/<sub>2</sub>] ?
Найдите все такие натуральные <i>n</i>, что при некоторых отличных от нуля действительных числах <i>a, b, c, d</i> многочлен (<i>ax + b</i>)<sup>1000</sup> – (<i>cx + d</i>)<sup>1000</sup> после раскрытия скобок и приведения всех подобных слагаемых имеет ровно <i>n</i> ненулевых коэффициентов.