Олимпиадная задача по алгебраическим неравенствам для 8-10 классов: доказательство неравенства с многочленами
Задача
Докажите, что для любых действительных чисел a и b справедливо неравенство a² + ab + b² ≥ 3(a + b – 1).
Решение
Решение 1:Рассмотрим выражение a² + ab + b² – 3(a + b – 1) = a² + (b – 3)a + (b² – 3b + 3) как квадратный трёхчлен относительно a. Его дискриминант равен
– 3(b – 1)² и, следовательно, неположителен. Так как коэффициент при a² положителен, то трёхчлен принимает только неотрицательные значения, значит, a² + ab + b² ≥ 3(a + b – 1) при любых a и b. Равенство достигается тогда и только тогда, когда a = b = 1.
Решение 2:a² + ab + b² – 3(a + b – 1) = (a – 1)² + (b – 1)² + (a – 1)(b – 1), а, как известно, выражение x² + xy + y² всегда неотрицательно.
Решение 3:2(a² + ab + b² – 3(a + b – 1)) = (a – 1)² + (b – 1)² + (a + b – 2)² ≥ 0. .
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь