Олимпиадные задачи из источника «2014 год» для 7-9 класса - сложность 2 с решениями
Дан остроугольный треугольник <i>ABC</i>. Окружности с центрами <i>A</i> и <i>C</i> проходят через точку <i>B</i>, вторично пересекаются в точке <i>F</i> и пересекают описанную окружность ω треугольника <i>ABC</i> в точках <i>D</i> и <i>E</i>. Отрезок <i>BF</i> пересекает окружность ω в точке <i>O</i>. Докажите, что <i>O</i> – центр описанной окружности треугольника <i>DEF</i>.
Какое наименьшее количество множителей требуется вычеркнуть из числа 99! так, чтобы произведение оставшихся множителей оканчивалось на 2?
В одной из вершин шестиугольника лежит золотая монета, а в остальных ничего не лежит. Кощей Бессмертный чахнет над златом и каждое утро снимает с одной вершины произвольное количество монет, после чего тут же кладёт на соседнюю вершину в шесть раз больше монет. Если к исходу какого-то дня во всех вершинах будет поровну монет, Кощей станет Властелином Мира. Докажите, что хоть злата у него сколько угодно, но Властелином Мира ему не бывать.
Каждый день, с понедельника по пятницу, ходил старик к синему морю и закидывал в море невод. При этом каждый день в невод попадалось не больше рыбы, чем в предыдущий. Всего за пять дней старик поймал ровно 100 рыбок. Какое наименьшее суммарное количество рыбок он мог поймать за три дня – понедельник, среду и пятницу?
Докажите, что если в выражении (<i>x</i>² – <i>x</i> + 1)<sup>2014</sup> раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.
Если разделить 2014 на 105, то в частном получится 19 и в остатке тоже 19.
На какие ещё натуральные числа можно разделить 2014, чтобы частное и остаток совпали?
Четырёхугольник <i>ABCD</i> – вписанный. На его диагоналях <i>AC</i> и <i>BD</i> отметили точки <i>K</i> и <i>L</i> соответственно так, что <i>AK = AB</i> и <i>DL = DC</i>.
Докажите, что прямые <i>KL</i> и <i>AD</i> параллельны.
Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?
Дан треугольник <i>ABC</i>. Прямая, параллельная <i>AC</i>, пересекает стороны <i>AB</i> и <i>BC</i> в точках <i>P</i> и <i>T</i> соответственно, а медиану <i>AM</i> – в точке <i>Q</i>. Известно, что <i>PQ</i> = 3, а <i>QT</i> = 5. Найдите длину <i>AC</i>.
Про коэффициенты <i>a, b, c</i> и <i>d</i> двух квадратных трёхчленов <i>x</i>² + <i>bx + c</i> и <i>x</i>² + <i>ax + d</i> известно, что 0 < <i> a < b < c < d</i>.
Могут ли эти трёхчлены иметь общий корень?
В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).
В треугольнике <i>АВС</i> угол <i>В</i> равен 120°, <i>АВ</i> = 2<i>ВС</i>. Серединный перпендикуляр к стороне <i>АВ</i> пересекает <i>АС</i> в точке <i>D</i>. Найдите отношение <i>AD</i> : <i>DC</i>.
Три пирата вечером поделили добытые за день бриллианты: по двенадцать Биллу и Сэму, а остальные – Джону, который считать не умел. Ночью Билл у Сэма, Сэм у Джона, а Джон у Билла украли по одному бриллианту. В результате средняя масса бриллиантов у Билла уменьшилась на один карат, у Сэма уменьшилась на два карата, зато у Джона увеличилась на четыре карата. Сколько бриллиантов досталось Джону?
Вершину <i>A</i> параллелограмма <i>ABCD</i> соединили отрезками с серединами сторон <i>BC</i> и <i>CD</i>. Один из этих отрезков оказался вдвое длиннее другого. Определите, каким является угол <i>ВАD</i>: острым, прямым или тупым.
Из клетчатой бумаги вырезана прямоугольная рамка (см. рисунок). Её разрезали по границам клеток на девять частей и сложили из них квадрат 6×6. Могли ли все части, полученные при разрезании, оказаться различными? (При складывании квадрата части можно переворачивать.)<div align="center"><img src="/storage/problem-media/64943/problem_64943_img_2.gif"></div>
Можно ли в кружках (см. рисунок) разместить различные натуральные числа таким образом, чтобы суммы трёх чисел вдоль каждого отрезка оказались равными?<div align="center"><img src="/storage/problem-media/64941/problem_64941_img_2.gif"></div>
Биолог последовательно рассаживал 150 жуков в десять банок. Причём в каждую следующую банку он сажал жуков больше, чем в предыдущую. Количество жуков в первой банке составляет не менее половины от количества жуков в десятой банке. Сколько жуков в шестой банке?
У юного художника была одна банка синей и одна банка жёлтой краски, каждой из которых хватает на покраску 38 дм<sup>2</sup> площади. Использовав всю эту краску, он нарисовал картину: синее небо, зелёную траву и жёлтое солнце. Зелёный цвет он получал, смешивая две части жёлтой краски и одну часть синей. Какая площадь на его картине закрашена каждым цветом, если площадь травы на картине на 6 дм<sup>2</sup> больше, чем площадь неба?
Соедините точки <i>А</i> и <i>В</i> (см. рисунок) ломаной из четырёх отрезков одинаковой длины так, чтобы выполнялись следующие условия:
1) концами отрезков могут быть только какие-то из отмеченных точек;
2) внутри отрезков не должно быть отмеченных точек;
3) соседние отрезки не должны лежать на одной прямой. <div align="center"><img src="/storage/problem-media/64938/problem_64938_img_2.gif"></div>
В тридевятом царстве есть только два вида монет: 16 и 27 тугриков. Можно ли заплатить за одну тетрадку ценой в 1 тугрик и получить сдачу?