Назад
Задача

Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

Решение

Решение 1:Найдём коэффициент при х в полученном многочлене. Подобные слагаемые с буквенной частью x образуются при перемножении 2014 одинаковых скобок следующим образом: в одной из скобок берется слагаемое  – x,  а в остальных скобках – слагаемое 1. Следовательно, коэффициент при х будет равен –2014.

Решение 2: Сумма коэффициентов полученного многочлена равна его значению при  x = 1,  то есть  (1 – 1 + 1)2014 = 1.  Но в этом многочлене коэффициент при x4028 и свободный член равны 1. Следовательно, должен быть хотя бы один отрицательный коэффициент.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет