Олимпиадные задачи из источника «8 класс»

Гномы сели за круглый стол и голосованием решили много вопросов. По каждому вопросу можно было голосовать "за", "против" или воздержаться. Если оба соседа какого-либо гнома по какому-нибудь вопросу выбрали один и тот же вариант ответа, то при голосовании по следующему вопросу он выберет этот же вариант. А если они выбрали два разных варианта, то при голосовании по следующему вопросу гном выберет третий вариант. Известно, что по вопросу "Блестит ли золото?" все гномы проголосовали "за", а по вопросу "Страшен ли Дракон?" Торин воздержался. Сколько могло быть гномов?

В треугольнике <i>АВС</i> угол <i>В</i> равен 120°,  <i>АВ</i> = 2<i>ВС</i>.  Серединный перпендикуляр к стороне <i>АВ</i> пересекает <i>АС</i> в точке <i>D</i>. Найдите отношение  <i>AD</i> : <i>DC</i>.

Три пирата вечером поделили добытые за день бриллианты: по двенадцать Биллу и Сэму, а остальные – Джону, который считать не умел. Ночью Билл у Сэма, Сэм у Джона, а Джон у Билла украли по одному бриллианту. В результате средняя масса бриллиантов у Билла уменьшилась на один карат, у Сэма уменьшилась на два карата, зато у Джона увеличилась на четыре карата. Сколько бриллиантов досталось Джону?

Вершину <i>A</i> параллелограмма <i>ABCD</i> соединили отрезками с серединами сторон <i>BC</i> и <i>CD</i>. Один из этих отрезков оказался вдвое длиннее другого. Определите, каким является угол <i>ВАD</i>: острым, прямым или тупым.

Из клетчатой бумаги вырезана прямоугольная рамка (см. рисунок). Её разрезали по границам клеток на девять частей и сложили из них квадрат 6×6. Могли ли все части, полученные при разрезании, оказаться различными? (При складывании квадрата части можно переворачивать.)<div align="center"><img src="/storage/problem-media/64943/problem_64943_img_2.gif"></div>

Графики трёх функций  <i>y = ax + a,  y = bx + b</i>  и  <i>y = cx + d</i>  имеют общую точку, причём  <i>a ≠ b</i>.  Обязательно ли  <i>c = d</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка