Олимпиадные задачи из источника «1987 год» для 10 класса
В некотором царстве, территория которого имеет форму квадрата со стороной 2 км, царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для этого он в полдень посылает с поручением гонца, который может передать любое указание любому жителю, который в свою очередь может передать любое указание любому другому жителю и т.д. Каждый житель до поступления указания находится в известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом направлении (по прямой). Доказать, что царь может организовать оповещение так, чтобы все жители успели прийти к началу бала.
Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения<i>n</i>числа<i>n</i>,<i>n</i>- 50,<i>n</i>+ 1987 принадлежали трём разным подмножествам?
а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа <i>x</i> и <i>y</i>, что 0 ≤ <img width="38" height="35" align="MIDDLE" border="0" src="/storage/problem-media/79520/problem_79520_img_2.gif"> ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?
Доказать, что для любых чисел <i>a</i><sub>1</sub>, ..., <i>a</i><sub>1987</sub> и положительных чисел <i>b</i><sub>1</sub>,..., <i>b</i><sub>1987</sub> справедливо неравенство <div align="CENTER"><img width="135" height="55" align="MIDDLE" border="0" src="/storage/problem-media/79518/problem_79518_img_2.gif"> ≤ <img width="23" height="55" align="MIDDLE" border="0" src="/storage/problem-media/79518/problem_79518_img_3.gif"> + ... + <img width="43" height="55" align="MIDDLE" border="0" src="/storage/problem-media/79518...
Найти такие 50 натуральных чисел, что ни одно из них не делится на другое, а произведение каждых двух из них делится на любое из оставшихся чисел.
Даны 7 различных цифр. Доказать, что для любого натурального числа<i>n</i>найдётся пара данных цифр, сумма которых оканчивается той же цифрой, что и число.
Можно ли выбрать некоторые натуральные числа так, чтобы при любом натуральном значении<i>n</i>хотя бы одно из чисел<i>n</i>,<i>n</i>+ 50 было выбрано и хотя бы одно из чисел<i>n</i>,<i>n</i>+ 1987 не было выбрано?
В выпуклом пятиугольнике <i>ABCDE</i> углы при вершинах <i>B</i> и <i>D</i> – прямые, ∠<i>BCA</i> = ∠<i>DCE</i>, а точка <i>M</i> – середина стороны <i>AE</i>. Доказать, что <i>MB = MD</i>.
По поляне, имеющей форму равностороннего треугольника со стороной 100 м, бегает волк. Охотник убивает волка, если стреляет в него с расстояния не более 30 м. Доказать, что охотник может убить волка, как бы быстро тот ни бегал.