Олимпиадные задачи из источника «1987 год» для 7 класса
В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.
Пусть<i>AB</i>— основание трапеции<i>ABCD</i>. Доказать, что если<i>AC</i>+<i>BC</i>=<i>AD</i>+<i>BD</i>, то трапеция<i>ABCD</i>— равнобокая.
Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно выбрать два числа, не являющихся взаимно простыми.
В марте 1987 года учитель решил провести 11 занятий математического кружка. Доказать, что если по субботам и воскресеньям кружок не проводить, то в марте найдутся три дня подряд, в течение которых не будет ни одного занятия кружка.