Олимпиадные задачи из источника «Белорусские республиканские математические олимпиады» для 8 класса
Белорусские республиканские математические олимпиады
НазадДоказать, что сумма цифр квадрата любого числа не может быть равна 1967.
Найти наименьшее натуральное число <i>A</i>, удовлетворяющее следующим условиям:
а) его запись оканчивается цифрой 6;
б) при перестановке цифры 6 из конца числа в его начало оно увеличивается в четыре раза.
Найти последние четыре цифры числа 5<sup>1965</sup>.
Найти четыре последовательных числа, произведение которых равно 1680.
Доказать, что если стороны квадрата и равновеликого ему прямоугольника выражены целыми числами, то отношение их периметров выражено не целым числом.
36 т груза упаковано в мешки вместимостью не более 1 т. Доказать, что четырёхтонный грузовой автомобиль за 11 поездок может перевезти этот груз.
Все целые числа произвольным образом разбиты на две группы. Доказать, что хотя бы в одной из групп найдутся три числа, одно из которых есть среднее арифметическое двух других.
Вершины тысячеугольника занумерованы числами от 1 до 1000. Начиная с первой, отмечается каждая пятнадцатая вершина (1, 16, 31 и т.д.). Вершины отмечаются до тех пор, пока не окажется, что все отмечаемые вершины уже найдены. Сколько вершин останутся неотмеченными?
Найти целые решения уравнения <i>x</i>²<i>y</i> = 10000<i>x + y</i>.
Решить в целых числах уравнение 9<i>x</i> + 2 = (<i>y</i> + 1)<i>y</i>.
Доказать, что <img src="/storage/problem-media/109151/problem_109151_img_2.gif"> <div align="center"><img src="/storage/problem-media/109151/problem_109151_img_3.gif"></div>
Найти двузначное число, которое равно сумме куба числа его десятков и квадрата числа его единиц.
Найти наименьшее значение выражения <i>x</i> + <sup>1</sup>/<sub>4<i>x</i></sub> при положительных значениях <i>x</i>.
Дан ряд чисел<i> 1,1,2,3,5,8,13,21,34,..., </i>каждое из которых, начиная с третьего, равно сумме двух предыдущих. Доказать, что каждое натуральное число<i> n>2 </i>равно сумме нескольких различных чисел указанного ряда.
Доказать неравенство <i>abc</i>² + <i>bca</i>² + <i>cab</i>² ≤ <i>a</i><sup>4</sup> + <i>b</i><sup>4</sup> + <i>c</i><sup>4</sup>.
<i>x</i><sub>1</sub> – вещественный корень уравнения <i>x</i>² + <i>ax + b</i> = 0, <i>x</i><sub>2</sub> – вещественный корень уравнения <i>x</i>² – <i>ax – b</i> = 0.
Доказать, что уравнение <i>x</i>² + 2<i>ax</i> + 2<i>b</i> = 0 имеет вещественный корень, заключённый между <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>. (<i>a</i> и <i>b</i> – вещественные числа).
Доказать, что если у шестиугольника противоположные стороны параллельны и диагонали, соединяющие противоположные вершины, равны, то вокруг него можно описать окружность.
На продолжении наибольшей стороны<i> AC </i>треугольника<i> ABC </i>отложен отрезок<i> |CD|=|BC| </i>. Доказать, что<i> <img src="/storage/problem-media/109039/problem_109039_img_2.gif"> ABD </i>тупой.
Решить систему уравнений 1 − <i>x</i><sub>1</sub><i>x</i><sub>2</sub><i>x</i><sub>3</sub> = 0,
1 + <i>x</i><sub>2</sub><i>x</i><sub>3</sub><i>x</i><sub>4</sub> = 0,
1 − <i>x</i><sub>3</sub><i>x</i><sub>4</sub><i>x</i><sub>5</sub> = 0,
1 + <i>x</i><sub>4</sub><i>x</i><sub>5</sub><i>x</i><sub>6</sub> = 0,
...
1 − <i>x</i><sub>47</sub><i>x</i><sub>48</sub><i>x</i><sub>49</sub> = 0,
1 + <i&...
<i> MA </i>и<i> MB </i>– касательные к окружности<i> O,; C </i>– точка внутри окружности, лежащая на дуге<i> AB </i>с центром в точке<i> M </i>. Доказать, что отличные от<i> A </i>и<i> B </i>точки пересечения прямых<i> AC </i>и<i> BC </i>с окружностью<i> O </i>лежат на противоположных концах одного диаметра.
Даны три точки<i> A,B,C </i>. Где на прямой<i> AC </i>нужно выбрать точку<i> M </i>, чтобы сумма радиусов окружностей, описанных около треугольников<i> ABM </i>и<i> CBM </i>, была наименьшей?
Доказать, что площадь прямоугольника, вписанного в треугольник, не превосходит половины площади этого треугольника.
<i> k </i>точек на плоскости расположены так, что любой треугольник с вершинами в этих точках имеет площадь не больше 1. Доказать, что все эти точки можно поместить в треугольник площади 4.
Найти все действительные решения системы уравнений
<i>x</i>² + <i>y</i>² + <i>z</i>² = 1,
<i>x</i>³ + <i>y</i>³ + <i>z</i>³ = 1.
Построить прямоугольный треугольник по радиусам вписанной и вневписанной (в прямой угол) окружностей.