Олимпиадные задачи из источника «Интернет-ресурсы» для 3-7 класса
В остроугольном треугольнике <i>ABC</i> на сторонах <i>AC</i> и <i>AB</i> отметили точки <i>K</i> и <i>L</i> соответственно, причём прямая <i>KL</i> параллельна <i>BC</i> и <i>KL = KC</i>. На стороне <i>BC</i> выбрана точка <i>M</i> так, что ∠<i>KMB</i> = ∠<i>BAC</i>. Докажите, что <i>KM = AL</i>. <small>Также доступны документы в формате TeX</small>
Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?
Какое наименьшее число сторон может иметь нечётноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?
В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.
Дан треугольник <i>ABC</i>. Точка <i>A</i><sub>1</sub> симметрична вершине <i>A</i> относительно прямой <i>BC</i>, а точка <i>C</i><sub>1</sub> симметрична вершине <i>C</i> относительно прямой <i>AB</i>.
Докажите, что если точки <i>A</i><sub>1</sub>, <i>B</i> и <i>C</i><sub>1</sub> лежат на одной прямой и <i>C</i><sub>1</sub><i>B</i> = 2<i>A</i><sub>1</sub><i>B</i>, то угол <i>CA</i><sub>1</sub><i>B</i> – прямой.
Существует ли выпуклый пятиугольник (все углы меньше180<i><sup>o</sup> </i>)<i> ABCDE </i>, у которого все углы<i> ABD </i>,<i> BCE </i>,<i> CDA </i>,<i> DEB </i>и<i> EAC </i>– тупые?
В четырёхугольнике <i>ABCD</i> углы <i>A</i> и <i>C</i> равны. Биссектриса угла <i>B</i> пересекает прямую <i>AD</i> в точке <i>P</i>. Перпендикуляр к <i>BP</i>, проходящий через точку <i>A</i>, пересекает прямую <i>BC</i> в точке <i>Q</i>. Докажите, что прямые <i>PQ</i> и <i>CD</i> параллельны.
Дан параллелограмм <i>ABCD</i> (<i>AB < BC</i>). Докажите, что описанные окружности треугольников <i>APQ</i> для всевозможных точек <i>P</i> и <i>Q</i>, выбранных на сторонах <i>BC</i> и <i>CD</i> соответственно так, что <i>CP = CQ</i>, имеют общую точку, отличную от <i>A</i>.
Внутри выпуклого пятиугольника выбраны две точки. Докажите, что можно выбрать четырёхугольник с вершинами в вершинах пятиугольника так, что внутрь него попадут обе выбранные точки.
Дан треугольник <i>ABC</i> с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники <i>ABC</i><sub>1</sub>, <i>BCA</i><sub>1</sub> и <i>CAB</i><sub>1</sub>. Докажите, что треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> не может быть правильным.
В треугольнике <i>ABC</i> угол <i>C</i> – прямой. На стороне <i>AC</i> нашлась такая точка <i>D</i>, а на отрезке <i>BD</i> – такая точка <i>K</i>, что ∠<i>B</i> = ∠<i>KAD</i> = ∠<i>AKD</i>.
Докажите, что <i>BK</i> = 2<i>DC</i>.
В выпуклом пятиугольнике <i>ABCDE</i> сторона <i>AB</i> перпендикулярна стороне <i>CD</i>, а сторона <i>BC</i> – стороне <i>DE</i>.
Докажите, что если <i>AB = AE = ED</i> = 1, то <i>BC + CD</i> < 1.
Города<i> A </i>,<i> B </i>,<i> C </i>и<i> D </i>расположены так, что расстояние от<i> C </i>до<i> A </i>меньше, чем расстояние от<i> D </i>до<i> A </i>, а расстояние от<i> C </i>до<i> B </i>меньше, чем расстояние от<i> D </i>до<i> B </i>. Докажите, что расстояние от города<i> C </i>до любой точки прямолинейной дороги, соединяющей города<i> A </i>и<i> B </i>, меньше, чем расстояние от<i> D </i>до этой точки.
Докажите, что в любом выпуклом многоугольнике имеется не более 35 углов, меньших170<i><sup>o</sup> </i>.
Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях.
На сторонах <i>AB</i> и <i>BC</i> равностороннего треугольника <i>ABC</i> взяты точки <i>D</i> и <i>K</i>, а на стороне <i>AC</i> – точки <i>E</i> и <i>M</i>, причём <i>DA + AE = KC + CM = AB</i>.
Докажите, что угол между прямыми <i>DM</i> и <i>KE</i> равен 60°.
Окружность <i>S</i> с центром <i>O</i> и окружность <i>S'</i> пересекаются в точках <i>A</i> и <i>B</i>. На дуге окружности <i>S</i>, лежащей внутри <i>S'</i>, взята точка <i>C</i>. Точки пересечения прямых <i>AC</i> и <i>BC</i> с <i>S'</i>, отличные от <i>A</i> и <i>B</i>, обозначим через <i>E</i> и <i>D</i> соответственно. Докажите, что прямые <i>DE</i> и <i>OC</i> перпендикулярны.
Пусть <i>O</i> – центр описанной окружности остроугольного треугольника <i>ABC, S<sub>A</sub>, S<sub>B</sub>, S<sub>C</sub></i> – окружности с центром <i>O</i>, касающиеся сторон <i>BC, CA</i> и <i>AB</i> соответственно. Докажите, что сумма трёх углов: между касательными к <i>S<sub>A</sub></i>, проведёнными из точки <i>A</i>, к <i>S<sub>B</sub></i> – из точки <i>B</i>, и к <i>S<sub>C</sub></i> – из точки <i>C</i>, равна 180°.
В треугольнике <i>ABC</i> проведены биссектриса <i>AK</i>, медиана <i>BL</i> и высота <i>CM</i>. Треугольник <i>KLM</i> – равносторонний.
Докажите, что треугольник <i>ABC</i> – равносторонний.
Расположите на плоскости как можно больше точек так, чтобы любые три точки не лежали на одной прямой и являлись вершинами равнобедренного треугольника.
Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.
Докажите, что найдётся пара и не соседних чисел с таким же свойством.
Из горячего крана ванна заполняется за 23 минуты, из холодного – за 17 минут. Маша открыла сначала горячий кран. Через сколько минут она должна открыть холодный, чтобы к моменту наполнения ванны горячей воды налилось в 1,5 раза больше, чем холодной?
На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?
В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?