Олимпиадные задачи из источника «Система задач по геометрии Р.К.Гордина (zadachi.mccme.ru)» для 3-7 класса - сложность 2-5 с решениями

В остроугольном треугольнике <i>ABC</i> на сторонах <i>AC</i> и <i>AB</i> отметили точки <i>K</i> и <i>L</i> соответственно, причём прямая <i>KL</i> параллельна <i>BC</i> и  <i>KL = KC</i>.  На стороне <i>BC</i> выбрана точка <i>M</i> так, что  ∠<i>KMB</i> = ∠<i>BAC</i>.  Докажите, что  <i>KM = AL</i>. <small>Также доступны документы в формате TeX</small>

Дан треугольник <i>ABC</i>. Точка <i>A</i><sub>1</sub> симметрична вершине <i>A</i> относительно прямой <i>BC</i>, а точка <i>C</i><sub>1</sub> симметрична вершине <i>C</i> относительно прямой <i>AB</i>.

Докажите, что если точки <i>A</i><sub>1</sub>, <i>B</i> и <i>C</i><sub>1</sub> лежат на одной прямой и  <i>C</i><sub>1</sub><i>B</i> = 2<i>A</i><sub>1</sub><i>B</i>,  то угол <i>CA</i><sub>1</sub><i>B</i> – прямой.

Существует ли выпуклый пятиугольник (все углы меньше180<i><sup>o</sup> </i>)<i> ABCDE </i>, у которого все углы<i> ABD </i>,<i> BCE </i>,<i> CDA </i>,<i> DEB </i>и<i> EAC </i>– тупые?

В четырёхугольнике <i>ABCD</i> углы <i>A</i> и <i>C</i> равны. Биссектриса угла <i>B</i> пересекает прямую <i>AD</i> в точке <i>P</i>. Перпендикуляр к <i>BP</i>, проходящий через точку <i>A</i>, пересекает прямую <i>BC</i> в точке <i>Q</i>. Докажите, что прямые <i>PQ</i> и <i>CD</i> параллельны.

Дан параллелограмм <i>ABCD</i>  (<i>AB < BC</i>).  Докажите, что описанные окружности треугольников <i>APQ</i> для всевозможных точек <i>P</i> и <i>Q</i>, выбранных на сторонах <i>BC</i> и <i>CD</i> соответственно так, что  <i>CP = CQ</i>,  имеют общую точку, отличную от <i>A</i>.

Внутри выпуклого пятиугольника выбраны две точки. Докажите, что можно выбрать четырёхугольник с вершинами в вершинах пятиугольника так, что внутрь него попадут обе выбранные точки.

Дан треугольник <i>ABC</i> с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники <i>ABC</i><sub>1</sub>, <i>BCA</i><sub>1</sub> и <i>CAB</i><sub>1</sub>. Докажите, что треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> не может быть правильным.

В треугольнике <i>ABC</i> угол <i>C</i> – прямой. На стороне <i>AC</i> нашлась такая точка <i>D</i>, а на отрезке <i>BD</i> – такая точка <i>K</i>, что  ∠<i>B</i> = ∠<i>KAD</i> = ∠<i>AKD</i>.

Докажите, что  <i>BK</i> = 2<i>DC</i>.

В выпуклом пятиугольнике <i>ABCDE</i> сторона <i>AB</i> перпендикулярна стороне <i>CD</i>, а сторона <i>BC</i> – стороне <i>DE</i>.

Докажите, что если  <i>AB = AE = ED</i> = 1,  то  <i>BC + CD</i>  < 1.

Города<i> A </i>,<i> B </i>,<i> C </i>и<i> D </i>расположены так, что расстояние от<i> C </i>до<i> A </i>меньше, чем расстояние от<i> D </i>до<i> A </i>, а расстояние от<i> C </i>до<i> B </i>меньше, чем расстояние от<i> D </i>до<i> B </i>. Докажите, что расстояние от города<i> C </i>до любой точки прямолинейной дороги, соединяющей города<i> A </i>и<i> B </i>, меньше, чем расстояние от<i> D </i>до этой точки.

Докажите, что в любом выпуклом многоугольнике имеется не более 35 углов, меньших170<i><sup>o</sup> </i>.

Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях.

На сторонах <i>AB</i> и <i>BC</i> равностороннего треугольника <i>ABC</i> взяты точки <i>D</i> и <i>K</i>, а на стороне <i>AC</i> – точки <i>E</i> и <i>M</i>, причём  <i>DA + AE = KC + CM = AB</i>.

Докажите, что угол между прямыми <i>DM</i> и <i>KE</i> равен 60°.

Окружность <i>S</i> с центром <i>O</i> и окружность <i>S'</i> пересекаются в точках <i>A</i> и <i>B</i>. На дуге окружности <i>S</i>, лежащей внутри <i>S'</i>, взята точка <i>C</i>. Точки пересечения прямых <i>AC</i> и <i>BC</i> с <i>S'</i>, отличные от <i>A</i> и <i>B</i>, обозначим через <i>E</i> и <i>D</i> соответственно. Докажите, что прямые <i>DE</i> и <i>OC</i> перпендикулярны.

Пусть <i>O</i> – центр описанной окружности остроугольного треугольника <i>ABC, S<sub>A</sub>, S<sub>B</sub>, S<sub>C</sub></i> – окружности с центром <i>O</i>, касающиеся сторон <i>BC, CA</i> и <i>AB</i> соответственно. Докажите, что сумма трёх углов: между касательными к <i>S<sub>A</sub></i>, проведёнными из точки <i>A</i>, к <i>S<sub>B</sub></i> – из точки <i>B</i>, и к <i>S<sub>C</sub></i> – из точки <i>C</i>, равна 180°.

В треугольнике <i>ABC</i> проведены биссектриса <i>AK</i>, медиана <i>BL</i> и высота <i>CM</i>. Треугольник <i>KLM</i> – равносторонний.

Докажите, что треугольник <i>ABC</i> – равносторонний.

Один из углов треугольника на 120° больше другого.

Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведённая из той же вершины.

Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?

Известно, что при пересечении прямых <i>a</i> и <i>b</i> третьей прямой образовалось 8 углов. Четыре из этих углов равны 80°, а четыре других равны 100°.

Следует ли из этого, что прямые <i>a</i> и <i>b</i> параллельны?

Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.

Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка