Олимпиадные задачи по теме «Методы математического анализа» для 9 класса - сложность 3 с решениями
Методы математического анализа
НазадДракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем
а) на 50-й день?
б) на 25-й день?
На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.
Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру.
Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.
Найдите все такие пары (<i>a, b</i>) натуральных чисел, что при любом натуральном <i>n</i> число <i>a<sup>n</sup> + b<sup>n</sup></i> является точной (<i>n</i>+1)-й степенью.
Докажите, что если <center><i> <img src="/storage/problem-media/109920/problem_109920_img_2.gif">+<img src="/storage/problem-media/109920/problem_109920_img_3.gif">+<img src="/storage/problem-media/109920/problem_109920_img_4.gif">=<img src="/storage/problem-media/109920/problem_109920_img_5.gif">+<img src="/storage/problem-media/109920/problem_109920_img_6.gif">+<img src="/storage/problem-media/109920/problem_109920_img_7.gif">=
<img src="/storage/problem-media/109920/problem_109920_img_8.gif">+<img src="/storage/problem-media/109920/problem_109920_img_9.gif">+<img src="/storage/problem-media/109920/problem_109920_img_10.gif">
<...
Какое наибольшее конечное число корней может иметь уравнение <center><i>
|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,
</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?
Даны натуральное число <i>n</i> > 3 и положительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, произведение которых равно 1.
Докажите неравенство <img align="middle" src="/storage/problem-media/109811/problem_109811_img_2.gif">
Докажите, что для любого натурального числа <i>n</i> > 10000 найдётся такое натуральное число <i>m</i>, представимое в виде суммы двух квадратов, что
0 < <i>m – n</i> < 3 <img align="absmiddle" src="/storage/problem-media/109761/problem_109761_img_2.gif"> .
Многочлен <i>P</i>(<i>x</i>) = <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> имеет три различных действительных корня, а многочлен <i>P</i>(<i>Q</i>(<i>x</i>)), где <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>x</i> + 2001, действительных корней не имеет. Докажите, что <i>P</i>(2001) > <sup>1</sup>/<sub>64</sub>.
Пусть –1 < <i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < ... < <i>x<sub>n</sub></i> < 1 и <img align="absmiddle" src="/storage/problem-media/109716/problem_109716_img_2.gif">
Докажите, что если <i>y</i><sub>1</sub> < <i>y</i><sub>2</sub> < ... < <i>y<sub>n</sub></i>, то <img align="absmiddle" src="/storage/problem-media/109716/problem_109716_img_3.gif">
Найдите все бесконечные ограниченные последовательности натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., для всех членов которых, начиная с третьего, выполнено <div align="center"><img src="/storage/problem-media/109692/problem_109692_img_2.gif"></div>
Решите в целых числах уравнение (<i>x</i>² – <i>y</i>²)² = 1 + 16<i>y</i>.
Докажите, что если(<i>x+<img src="/storage/problem-media/109565/problem_109565_img_2.gif"></i>)(<i>y+<img src="/storage/problem-media/109565/problem_109565_img_3.gif"></i>)<i>=</i>1, то<i> x+y=</i>0.
Существует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>, <i>n</i> > 1, положительны?
Дан многочлен <i>P</i>(<i>x</i>) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., такая, что <i>P</i>(<i>a</i><sub>1</sub>) = 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub> и т. д. Докажите, что не все числа в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... различны.
Пусть <i>P</i>(<i>x</i>) – многочлен со старшим коэффициентом 1, а последовательность целых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... такова, что <i>P</i>(<i>a</i><sub>1</sub>)= 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub> и т. д. Числа в последовательности не повторяются. Какую степень может иметь <i>P</i>(<i>x</i>)?
Вершины 50-угольника делят окружность на 50 дуг, длины которых – 1, 2, 3, ..., 50 в некотором порядке. Известно, что каждая пара "противоположных" дуг (соответствующих противоположным сторонам 50-угольника) отличается по длине на 25. Докажите, что у 50-угольника найдутся две параллельные стороны.
Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)
Точка <i>P</i> лежит на описанной окружности треугольника <i>ABC</i>. Построим треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, стороны которого параллельны отрезкам <i>PA, PB, PC</i>
(<i>B</i><sub>1</sub><i>C</i><sub>1</sub> || <i>PA, C</i><sub>1</sub><i>A</i><sub>1</sub> || <i>PB, A</i><sub>1</sub><i>B</i><sub>1</sub> || <i>PC</i>). Через точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> проведены прямые, пар...
На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.
Можно ли покрыть плоскость окружностями так, чтобы через каждую точку проходило ровно 1988 окружностей?
В некоторой стране 1985 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. Могло ли случиться, что в результате все 1985 самолётов оказались на 50 аэродромах? (Землю можно считать плоской, а маршруты прямыми; попарные расстояния между аэродромами предполагаются различными.)
Дан биллиард прямоугольной формы. В его углах имеются лузы, попадая в которые шарик останавливается. Шарик выпускают из одного угла бильярда под углом45<sup><tt>o</tt></sup>к стороне. В какой-то момент он попал в середину некоторой стороны. Доказать, что в середине противоположной стороны он побывать не мог.
Дан выпуклый многоугольник и точка<i>O</i>внутри него. Любая прямая, проходящая через точку<i>O</i>, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и<i>O</i>— центр симметрии.