Олимпиадные задачи по теме «Геометрические методы» для 9 класса - сложность 1-4 с решениями

Прямая пересекает график функции  <i>y = x</i>²  в точках с абсциссами <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>, а ось абсцисс – в точке с абсциссой <i>x</i><sub>3</sub>. Докажите, что   <img align="absmiddle" src="/storage/problem-media/116488/problem_116488_img_2.gif"> .

В четырёхугольнике<i> ABCD </i>найдите такую точку<i> E </i>, для которой отношение площадей треугольников<i> EAB </i>и<i> ECD </i>было равно 1:2, а треугольников<i> EAD </i>и<i> EBC </i>— 3:4, если известны координаты всех его вершин:<i> A</i>(<i>-</i>2<i>;-</i>4),<i> B</i>(<i>-</i>2<i>;</i>3),<i> C</i>(4<i>;</i>6),<i> D</i>(4<i>;-</i>1).

В четырёхугольнике<i> PQRS </i>найдите такую точку<i> T </i>, для которой отношение площадей треугольников<i> RQT </i>и<i> PST </i>было равно 2:1, а треугольников<i> SRT </i>и<i> PQT </i>— 1:5, если известны координаты всех его вершин:<i> P</i>(6<i>;-</i>2),<i> Q</i>(3<i>;</i>4),<i> R</i>(<i>-</i>3<i>;</i>4),<i> S</i>(0<i>;-</i>2).

Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.

Найдите сумму абсцисс точек пересечения этих прямых с прямой  <i>y</i> = 100 – <i>x</i>.

Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.

В угол <i>A</i>, равный α, вписана окружность, касающаяся его сторон в точках <i>B</i> и <i>C</i>. Прямая, касающаяся окружности в некоторой точке <i>M</i>, пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>Р</i> и <i>Q</i> соответственно. При каких α может быть выполнено неравенство <i>S<sub>PAQ</sub> < S<sub>BMC</sub></i>?

На плоскости дан квадрат<i> ABCD </i>. Найдите минимум частного<i> <img align="absmiddle" src="/storage/problem-media/115718/problem_115718_img_2.gif"> </i>, где<i> O </i>— произвольная точка плоскости.

Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).

Чему равен периметр внутреннего пятиугольника <i>ABCDE</i>, если длина исходной ломаной равна 1? <div align="center"><img src="/storage/problem-media/115687/problem_115687_img_2.gif"></div>

Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?

Дан набор из<i> n></i>2векторов. Назовем вектор набора длинным, если его длина не меньше длины суммы остальных векторов набора. Докажите, что если каждый вектор набора– длинный, то сумма всех векторов набора равна нулю.

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.

  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?

  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?

  в) Могут ли длины отрезков равняться 4, 4 и 3?

Укажите все выпуклые четырёхугольники, у которых суммы синусов противолежащих углов равны.

В окружность вписаны три правильных многоугольника, число сторон каждого последующего вдвое больше, чем у предыдущего. Площади первых двух равны <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub>. Найдите площадь третьего.

Два правильных многоугольника с периметрами <i>a</i> и <i>b</i> описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.

Вася постоял некоторое время на остановке. За это время проехал один автобус и два трамвая. Через некоторое время на эту же остановку пришёл Шпион. Пока он там сидел, проехало 10 автобусов. Какое минимальное число трамваев могло проехать за это время? И автобусы, и трамваи ходят с равными интервалами, причём автобусы ходят с интервалом 1 час.

Докажите, что если<i> α </i>,<i> β </i>и<i> γ </i>– углы остроугольного треугольника, то<i> sinα + sinβ + sinγ > </i>2.

На плоскости даны точки<i> A</i>(<i>-</i>1<i>;</i>2),<i> B</i>(<i>-</i>2<i>;</i>1),<i> C</i>(<i>-</i>3<i>;-</i>3),<i> D</i>(0<i>;</i>0). Они являются вершинами выпуклого четырёхугольника<i> ABCD </i>. В каком отношении точка пересечения его диагоналей делит диагональ<i> AC </i>?

На плоскости даны точки<i> A</i>(1<i>;</i>2),<i> B</i>(2<i>;</i>1),<i> C</i>(3<i>;-</i>3),<i> D</i>(0<i>;</i>0). Они являются вершинами выпуклого четырёхугольника<i> ABCD </i>. В каком отношении точка пересечения его диагоналей делит диагональ<i> AC </i>?

Каждую вершину выпуклого четырехугольника площади<i> S </i>отразили симметрично относительно диагонали, не содержащей эту вершину. Обозначим площадь получившегося четырехугольника через<i> S' </i>. Докажите, что<i> <img src="/storage/problem-media/110176/problem_110176_img_2.gif"><</i>3.

На плоскости отмечено<i> N<img src="/storage/problem-media/110154/problem_110154_img_2.gif"> </i>3различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более<i> n </i>различных расстояний. Докажите, что<i> N<img src="/storage/problem-media/110154/problem_110154_img_3.gif"> </i>(<i>n+</i>1)<i><sup>2</sup> </i>.

Найдите все углы<i> α </i>, для которых набор чисел<i> sinα </i>,<i> sin</i>2<i>α </i>,<i> sin</i>3<i>α </i>совпадает с набором<i> cosα </i>,<i> cos</i>2<i>α </i>,<i> cos</i>3<i>α </i>.

На плоскости даны<i> n></i>1точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?

Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка