Олимпиадные задачи по теме «Геометрия» для 8 класса - сложность 1-2 с решениями

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. <div align="center"><img src="/storage/problem-media/116965/problem_116965_img_2.gif"></div>

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:

  а) за 5 или менее;

  б) за 4 или менее;

  в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>A</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A'</i> и <i>C'</i>. Касательные к Ω, проведённые в точках <i>A'</i> и <i>C'</i>, пересекаются в точке <i>B'</i>. Докажите, что прямая <i>BB'</i> проходит через центр окружности Ω.

Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.)

Окружность, вписанная в прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>, касается его сторон <i>BC, CA, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Пусть <i>B</i><sub>1</sub><i>H</i> – высота треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что точка <i>H</i> лежит на биссектрисе угла <i>CAB</i>.

Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?

На сторонах <i>АВ, ВС</i> и <i>АС</i> равностороннего треугольника <i>АВС</i> выбраны точки <i>K, M</i> и <i>N</i> соответственно так, что угол <i>MKB</i> равен углу <i>MNC</i>, а угол <i>KMB</i> равен углу <i>KNA</i>. Докажите, что <i>NB</i> – биссектриса угла <i>MNK</i>.

В треугольнике <i>ABC</i> медиана, проведённая из вершины <i>A</i> к стороне <i>BC</i>, в четыре раза меньше стороны <i>AB</i> и образует с ней угол 60°. Найдите угол <i>А</i>.

В четырёхугольнике есть два прямых угла, а его диагонали равны. Верно ли, что он является прямоугольником?

На клетчатой бумаге нарисован квадрат 7×7. Покажите, как разрезать его по линиям сетки на шесть частей и сложить из них три квадрата.

Дан равнобедренный треугольник <i>ABC</i>, в котором  <i>BC = a</i>,  <i>AB = AC = b</i>.  На стороне <i>AC</i> во внешнюю сторону построен треугольник <i>ADC</i>, в котором

<i>AD = DC = a</i>.  Пусть <i>CM</i> и <i>CN</i> – биссектрисы в треугольниках <i>ABC</i> и <i>ADC</i> соответственно. Найдите радиус описанной окружности треугольника <i>CMN</i>.

<i>ABC</i> – равнобедренный прямоугольный треугольник. На продолжении гипотенузы <i>AB</i> за точку <i>A</i> взята точка <i>D</i> так, что  <i>AB</i> = 2<i>AD</i>. Точки <i>M</i> и <i>N</i> на стороне <i>AC</i> таковы, что  <i>AM = NC</i>.  На продолжении стороны <i>CB</i> за точку <i>B</i> взята такая точка <i>K</i>, что  <i>CN = BK</i>.  Найдите угол между прямыми <i>NK</i> и <i>DM</i>.

В остроугольном треугольнике <i>ABC</i> провели высоты <i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub>, которые пересекаются в точке <i>O</i>. Затем провели высоту <i>A</i><sub>1</sub><i>A</i><sub>2</sub> треугольника <i>OBA</i><sub>1</sub> и высоту <i>B</i><sub>1</sub><i>B</i><sub>2</sub> треугольника <i>OAB</i><sub>1</sub>. Докажите, что отрезок <i>A</i><sub>2</sub><i>B</i><sub>2</sub> параллелен стороне <i>AB</i>.

Существует ли такие выпуклый четырёхугольник и точка <i>P</i> внутри него, что сумма расстояний от <i>P</i> до вершин больше периметра четырёхугольника?

В треугольнике <i>ABC</i> провели биссектрисы <i>BB'</i> и <i>CC'</i>, а затем стёрли весь рисунок, кроме точек <i>A, B'</i> и <i>C'</i>.

Восстановите треугольник <i>ABC</i> при помощи циркуля и линейки.

Точка <i>M</i> – середина основания <i>AC</i> остроугольного равнобедренного треугольника <i>ABC</i>. Точка <i>N</i> симметрична <i>M</i> относительно <i>BC</i>. Прямая, параллельная <i>AC</i> и проходящая через точку <i>N</i>, пересекает сторону <i>AB</i> в точке <i>K</i>. Найдите угол <i>AKC</i>.

Точка <i>K</i> – середина гипотенузы <i>АВ</i> прямоугольного треугольника <i>АВС</i>. На катетах <i>АС</i> и <i>ВС</i> выбраны точки <i>М</i> и <i>N</i> соответственно так, что угол <i>МKN</i> – прямой. Докажите, что из отрезков <i>АМ, ВN</i> и <i>MN</i> можно составить прямоугольный треугольник.

В трапеции <i>ABCD</i> основание <i>BC</i> в два раза меньше основания <i>AD</i>. Из вершины <i>D</i> опущен перпендикуляр <i>DE</i> на сторону <i>AB</i>. Докажите, что  <i>СЕ = CD</i>.

Через концы основания <i>BC</i> трапеции <i>ABCD</i> провели окружность, которая пересекла боковые стороны <i>AB</i> и <i>CD</i> в точках <i>M</i> и <i>N</i> соответственно. Известно, что точка <i>T</i> пересечения отрезков <i>AN</i> и <i>DM</i> также лежит на этой окружности. Докажите, что  <i>TB</i> = <i>TC</i>.

В параллелограмме <i>ABCD</i> диагональ <i>АС</i> в два раза больше стороны <i>АВ</i>. На стороне <i>BC</i> выбрана точка <i>K</i> так, что  ∠<i>KDB</i> = ∠<i>BDA</i>.

Найдите отношение  <i>BK</i> : <i>KC</i>.

а) Внутри окружности находится некоторая точка <i>A</i>. Через <i>A</i> провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.

Докажите, что центр масс этих точек не зависит от выбора таких двух прямых. б) Внутри окружности находится правильный 2<i>n</i>-угольник  (<i>n</i> > 2),  его центр <i>A</i> не обязательно совпадает с центром окружности. Лучи, выпущенные из <i>A</i> в вершины 2<i>n</i>-угольника, высекают 2<i>n</i> точек на окружности. 2<i>n</i>-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2<i>n</i> новых точек. Докажите, что их центр масс совпадает с центром масс старых 2<i>n</i> точек....

Окружность касается сторон <i>AB, BC, CD</i> параллелограмма <i>ABCD</i> в точках <i>K, L, M</i> соответственно.

Докажите, что прямая <i>KL</i> делит пополам высоту параллелограмма, опущенную из вершины <i>C</i> на <i>AB</i>.

На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?

Длина прямоугольного участка равна 4 метра, а ширина – 1 метр.

Можно ли посадить на нём три дерева так, чтобы расстояние между любыми двумя деревьями было не меньше чем 2,5 метра?

В остроугольном треугольнике <i>ABC</i> проведены биссектриса <i>AD</i> и высота <i>BE</i>. Докажите, что  ∠<i>CED</i> > 45°.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка