Олимпиадные задачи по теме «Средние величины» для 11 класса

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

В классе находятся учитель и несколько учеников. Известно, что возраст учителя на 24 года больше среднего возраста учеников и на 20 лет больше среднего возраста всех присутствующих в классе. Сколько учеников находится в классе?

  Пусть 2<i>S</i> – суммарный вес некоторого набора гирек. Назовём натуральное число <i>k средним</i>, если в наборе можно выбрать <i>k</i> гирек, суммарный вес которых равен <i>S</i>. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?

В вершинах выпуклого <i>n</i>-угольника расставлены <i>m</i> фишек  (<i>m > n</i>).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине <i>n</i>-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно <i>n</i>.

Все целые числа произвольным образом разбиты на две группы. Доказать, что хотя бы в одной из групп найдутся три числа, одно из которых есть среднее арифметическое двух других.

Все имеющиеся на складе конфеты разных сортов разложены по <i>n</i> коробкам, на которые установлены цены в 1, 2, ..., <i>n</i>  у. е. соответственно. Требуется купить такие <i>k</i> из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее <i><sup>k</sup>/<sub>n</sub></i> массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.

  а) Какие коробки следует купить при  <i>n</i> = 10  и  <i>k</i> = 3 ?

  б) Тот же вопрос для произвольных натуральных  <i>n ≥ k</i>.

Автобус, едущий по маршруту длиной 100 км, снабжен компьютером, показывающим прогноз времени, остающегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автобуса на оставшемся участке маршрута будет такой же, как и на уже пройденной его части. Спустя 40 минут после начала движения ожидаемое время до прибытия составляло 1 час и оставалось таким же ещё в течение пяти часов. Могло ли такое быть? Если да, то сколько километров проехал автобус к окончанию этих пяти часов?

В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.

Известно, что модули всех корней уравнений  <i>x</i>² + <i>Ax + B</i> = 0,  <i>x</i>² + <i>Cx + D</i> = 0  меньше единицы. Доказать, что модули корней уравнения

<i>x</i>² + ½ (<i>A + C</i>)<i>x</i> + ½ (<i>B + D</i>)<i>x</i> = 0  также меньше единицы. <i>A, B, C, D</i> – действительные числа.

Известно, что разность между наибольшим и наименьшим из чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, ..., <i>x</i><sub>9</sub>, <i>x</i><sub>10</sub> равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел <i>x</i><sub>1</sub>,  ½ (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub>),  &frac13; (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i><sub>3</sub>),  ...,  <sup>1</sup>/<sub>10</sub> (<i>x</i><sub>1<...

Хозяин обещает работнику платить в среднем   <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_2.gif">   рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального <i>n</i> выплаченная за первые <i>n</i> дней сумма была натуральным числом, наиболее близким к   <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_3.gif">   Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.

Докажите это.

Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?

Докажите, что среднее арифметическое всех делителей натурального числа <i>n</i> лежит на отрезке  <img align="absmiddle" src="/storage/problem-media/66356/problem_66356_img_2.gif">

Имеется <i>n</i> случайных векторов вида  (<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, <i>y</i><sub>3</sub>),  где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор <i><b>a</b></i> с координатами  (<i>Y</i><sub>1</sub>, <i>Y</i><sub>2</sub>, <i>Y</i><sub>3</sub>).

  а) Найдите математическое ожидание случайной величины <i><b>a</b></i>².

  б) Докажите, что  <img align="absmiddle" src="/storage/problem-media/66053/problem_66053_img_2.gif">

Последовательность состоит из 19 единиц и 49 нулей, стоящих в случайном порядке. Назовём группой максимальную подпоследовательность из одинаковых символов. Например, в последовательности 110001001111 пять групп: две единицы, потом три нуля, потом одна единица, потом два нуля и, наконец, четыре единицы. Найдите математическое ожидание длины первой группы.

  Преподаватель кружка по теории вероятностей откинулся в кресле и посмотрел на экран. Список записавшихся готов. Всего получилось <i>n</i> человек. Только они пока не по алфавиту, а в случайном порядке, в каком они приходили на занятие.

  "Надо отсортировать их в алфавитном порядке, – подумал преподаватель. – Пойду по порядку сверху вниз, и, если нужно, буду переставлять фамилию ученика вверх в подходящее место. Каждую фамилию придётся переставить не более одного раза".

  Докажите, что математическое ожидание числа фамилий, которые не придётся переставлять, равно  1 + ½ + &frac13; + ... + <sup>1</sup>/<sub><i>n</i></sub>.

Поля шахматной доски пронумерованы по строкам сверху вниз числами от 1 до 64. На доску случайным образом поставлено шесть ладей, которые не бьют друг друга (одна из возможных расстановок показана на рисунке). Найдите математическое ожидание суммы номеров полей, занятых ладьями. <div align="center"><img src="/storage/problem-media/65786/problem_65786_img_2.gif"></div>

Билет на электричку стоит 50 рублей, а штраф за безбилетный проезд – 450 рублей. Если безбилетник (заяц) попадается контролёру, то оплачивает и штраф, и стоимость билета. Известно, что контролёр встречается в среднем один раз на 10 поездок. Заяц ознакомился с основами теории вероятностей и решил придерживаться стратегии, которая делает математическое ожидание расходов наименьшим возможным. Как ему поступать: покупать билет каждый раз, не покупать никогда или бросать монетку – покупать билет или нет?

ЕГЭ по математике в волшебной стране Оз устроено следующим образом. Каждую работу независимо друг от друга проверяют три преподавателя, и каждый ставит за каждую задачу 0 или 1 балл. Затем компьютер находит среднее арифметическое оценок за эту задачу и округляет его до ближайшего целого. Затем баллы, полученные за все задачи, суммируются. Случилось так, что в одной из работ каждый из трёх экспертов поставил по 1 баллу за 3 задачи и 0 баллов за все прочие задачи. Найдите наибольший возможный суммарный балл за эту работу.

Бухгалтер конторы "Рога и копыта" Балаганов составил штатное расписание – таблицу, в которой указаны все должности, количество сотрудников и их оклады (месячные зарплаты). Кроме того, указан средний оклад по конторе. Некоторые места Паниковский случайно заляпал вареньем, и стало невозможно прочитать, что там написано. <div align="center"><img src="/storage/problem-media/65781/problem_65781_img_2.png"></div>Либо найдите заляпанные вареньем числа, либо докажите, что Балаганов ошибся.

Две хоккейные команды одинаковой силы договорились, что будут играть до тех пор, пока суммарный счёт не достигнет 10.

Найдите математическое ожидание числа моментов, когда наступала ничья.

На конференцию приехали 18 учёных, из которых ровно 10 знают сногсшибательную новость. Во время перерыва (кофе-брейка) все учёные разбиваются на случайные пары, и в каждой паре каждый, кто знает новость, рассказывает эту новость другому, если тот её ещё не знал.

  а) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 13.

  б) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 14.

  в) Обозначим буквой <i>X</i> количество учёных, которые знают сногсшибательную новость после кофе-брейка. Найдите математическое ожидание <i>X</i>.

На знакомом нам заводе вырезают металлические диски диаметром 1 м. Известно, что диск диаметром ровно 1 м весит ровно 100 кг. При изготовлении возникает ошибка измерения, и поэтому стандартное отклонение радиуса составляет 10 мм. Инженер Сидоров считает, что стопка из 100 дисков в среднем будет весить 10000 кг. На сколько ошибается инженер Сидоров?

На заводе имени матроса Железняка изготавливают прямоугольники длиной 2 м и шириной 1 м. Длину отмеряет рабочий Иванов, а ширину, независимо от Иванова, отмеряет рабочий Петров. Средняя ошибка у обоих нулевая, но Иванов допускает стандартную ошибку измерения (стандартное отклонение длины) 3 мм, а Петров допускает стандартную ошибку 2 мм.

  а) Найдите математическое ожидание площади получившегося прямоугольника.

  б) Найдите стандартное отклонение площади получившегося прямоугольника в квадратных сантиметрах.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка