Олимпиадные задачи по теме «Средние величины» для 10 класса - сложность 1-2 с решениями
Средние величины
НазадИзвестно, что модули корней каждого из двух квадратных трёхчленов <i>x</i>² + <i>ax + b</i> и <i>x</i>² + <i>cx + d</i> меньше 10. Может ли трёхчлен <img align="absmiddle" src="/storage/problem-media/116803/problem_116803_img_2.gif"> иметь корни, модули которых не меньше 10?
На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.
В классе находятся учитель и несколько учеников. Известно, что возраст учителя на 24 года больше среднего возраста учеников и на 20 лет больше среднего возраста всех присутствующих в классе. Сколько учеников находится в классе?
Гриша едет по маршруту длиной 100 км. В его автомобиле имеется компьютер, дающий прогноз времени, оставшегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автомобиля на оставшемся участке пути будет такой же, как и на уже пройденном.
Сразу же после старта компьютер показал "2 часа" и всё дальнейшее время показывал именно это число (компьютер исправен). Найдите <i>x</i>(<i>t</i>) – зависимость пути, который проехал Гриша, от времени с момента старта. Постройте график этой зависимости.
Автобус, едущий по маршруту длиной 100 км, снабжен компьютером, показывающим прогноз времени, остающегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автобуса на оставшемся участке маршрута будет такой же, как и на уже пройденной его части. Спустя 40 минут после начала движения ожидаемое время до прибытия составляло 1 час и оставалось таким же ещё в течение пяти часов. Могло ли такое быть? Если да, то сколько километров проехал автобус к окончанию этих пяти часов?
На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).
Известно, что модули всех корней уравнений <i>x</i>² + <i>Ax + B</i> = 0, <i>x</i>² + <i>Cx + D</i> = 0 меньше единицы. Доказать, что модули корней уравнения
<i>x</i>² + ½ (<i>A + C</i>)<i>x</i> + ½ (<i>B + D</i>)<i>x</i> = 0 также меньше единицы. <i>A, B, C, D</i> – действительные числа.
Докажите, что среднее арифметическое всех делителей натурального числа <i>n</i> лежит на отрезке <img align="absmiddle" src="/storage/problem-media/66356/problem_66356_img_2.gif">
Имеется <i>n</i> случайных векторов вида (<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, <i>y</i><sub>3</sub>), где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор <i><b>a</b></i> с координатами (<i>Y</i><sub>1</sub>, <i>Y</i><sub>2</sub>, <i>Y</i><sub>3</sub>).
а) Найдите математическое ожидание случайной величины <i><b>a</b></i>².
б) Докажите, что <img align="absmiddle" src="/storage/problem-media/66053/problem_66053_img_2.gif">
По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему). <div align="center"><img src="/storage/problem-media/66051/problem_66051_img_2.gif"></div> Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут. По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям: - поезд, идущий против часо...
На бал пришли <i>n</i> семейных пар. В каждой паре муж и жена абсолютно одинакового роста, но двух пар одного роста нет. Начинает звучать вальс, и все пришедшие разбиваются случайным образом на пары: каждый кавалер танцует со случайно выбранной дамой. Найдите математическое ожидание случайной величины <i>X</i> "Число кавалеров, которые ниже своей партнёрши".
В турнире участвуют 100 борцов, все разной силы. В любом поединке двух борцов всегда побеждает тот, кто сильнее. В первом туре борцы разбились на случайные пары и провели поединки. Для второго тура борцы ещё раз разбиваются на случайные пары соперников (может случиться, что какие-то пары повторятся). Приз получает тот, кто выиграет оба поединка. Найдите: а) наименьшее возможное число призёров турнира; б) математическое ожидание числа призеров турнира.
Билет на электричку стоит 50 рублей, а штраф за безбилетный проезд – 450 рублей. Если безбилетник (заяц) попадается контролёру, то оплачивает и штраф, и стоимость билета. Известно, что контролёр встречается в среднем один раз на 10 поездок. Заяц ознакомился с основами теории вероятностей и решил придерживаться стратегии, которая делает математическое ожидание расходов наименьшим возможным. Как ему поступать: покупать билет каждый раз, не покупать никогда или бросать монетку – покупать билет или нет?
ЕГЭ по математике в волшебной стране Оз устроено следующим образом. Каждую работу независимо друг от друга проверяют три преподавателя, и каждый ставит за каждую задачу 0 или 1 балл. Затем компьютер находит среднее арифметическое оценок за эту задачу и округляет его до ближайшего целого. Затем баллы, полученные за все задачи, суммируются. Случилось так, что в одной из работ каждый из трёх экспертов поставил по 1 баллу за 3 задачи и 0 баллов за все прочие задачи. Найдите наибольший возможный суммарный балл за эту работу.
Бухгалтер конторы "Рога и копыта" Балаганов составил штатное расписание – таблицу, в которой указаны все должности, количество сотрудников и их оклады (месячные зарплаты). Кроме того, указан средний оклад по конторе. Некоторые места Паниковский случайно заляпал вареньем, и стало невозможно прочитать, что там написано. <div align="center"><img src="/storage/problem-media/65781/problem_65781_img_2.png"></div>Либо найдите заляпанные вареньем числа, либо докажите, что Балаганов ошибся.
На конференцию приехали 18 учёных, из которых ровно 10 знают сногсшибательную новость. Во время перерыва (кофе-брейка) все учёные разбиваются на случайные пары, и в каждой паре каждый, кто знает новость, рассказывает эту новость другому, если тот её ещё не знал.
а) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 13.
б) Найдите вероятность того, что после кофе-брейка число учёных, знающих новость, будет равно 14.
в) Обозначим буквой <i>X</i> количество учёных, которые знают сногсшибательную новость после кофе-брейка. Найдите математическое ожидание <i>X</i>.
На знакомом нам заводе вырезают металлические диски диаметром 1 м. Известно, что диск диаметром ровно 1 м весит ровно 100 кг. При изготовлении возникает ошибка измерения, и поэтому стандартное отклонение радиуса составляет 10 мм. Инженер Сидоров считает, что стопка из 100 дисков в среднем будет весить 10000 кг. На сколько ошибается инженер Сидоров?
К концу полугодия у Василия Петрова в журнале стояли такие отметки по математике: 4, 1, 2, 5, 2 Перед тем как выставить полугодовую отметку, учитель математики сказал Васе:
– Вася, ты можешь выбрать метод, как вывести твою отметку за полугодие. Предлагаю два варианта. Метод А: среднее арифметическое текущих отметок с округлением до целого. Метод Б: медиана текущих отметок.
Лучший метод для Васи – это такой метод, который даст Васе в полугодии наибольшую отметку. Какой метод для Васи лучший?
Городской муниципалитет Затонска принял правило: отопление в домах следует включать не раньше 26 октября, но только если средняя температура в течение трёх предыдущих дней ниже 8°C. В городе два района – Прибрежный и Заречный.
В Прибрежном районе правило поняли так: если три дня подряд средняя дневная температура каждый день ниже 8°C, то на четвёртый день нужно включить отопление, если этот день случился 26 октября или позже.
В Заречном районе правило поняли иначе: если средняя температура за трёхдневный период ниже 8°C, то на четвёртый день нужно включить отопление, если этот день не раньше 26 октября.
В таблице показана средняя дневная температура за несколько дней октября. <div align="center"><img src="/storage/problem-media/65765/problem_65765_...
Вероятность рождения двойняшек в Швамбрании равна <i>p</i>, тройняшки в Швамбрании не рождаются.
а) Оцените вероятность того, что встреченный на улице швамбранец – один из пары двойняшек?
б) В некоторой швамбранской семье трое детей. Какова вероятность того, что среди них есть пара двойняшек?
в) В школах швамбранских двойняшек обязательно зачисляют в один класс. Всего в Швамбрании <i>N</i> первоклассников.
Каково матожидание числа пар двойняшек среди них?
Петр Иванович, еще 49 мужчин и 50 женщин в случайном порядке рассаживаются вокруг круглого стола. Назовём мужчину довольным, если рядом с ним сидит женщина. Найдите:
а) вероятность того, что Петр Иванович доволен;
б) математическое ожидание числа довольных мужчин.
В числовом наборе <i>n</i> чисел, причём одно из чисел равно 0, а другое равно 1.
а) Какова наименьшая возможная дисперсия такого набора чисел?
б) Каким для этого должен быть набор?
Рассеянный Ученый сконструировал прибор, состоящий из датчика и передатчика. Средний срок (математическое ожидание) службы датчика 3 года, средний срок службы передатчика 5 лет. Зная распределения срока службы датчика и передатчика, Рассеянный Ученый вычислил, что средний срок службы всего прибора равен 3 года 8 месяцев. Не ошибся ли Рассеянный Ученый в своих расчетах?
Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка <i>F</i>. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку <i>F</i>. Найдите математическое ожидание числа сторон появившегося красного многоугольника. <div align="center"><img src="/storage/problem-media/65305/problem_65305_img_2.png"></div>
Длина гипотенузы прямоугольного треугольника равна 3.
а) Рассеянный Учёный вычислил дисперсию длин сторон этого треугольника и нашёл, что она равняется 2. Не ошибся ли он в расчетах?
б) Какое наименьшее стандартное отклонение сторон может иметь такой прямоугольный треугольник? Какие у него при этом катеты?