Олимпиадные задачи по теме «Последовательности» для 9 класса - сложность 2 с решениями

На доске записаны в ряд сто чисел, отличных от нуля. Известно, что каждое число, кроме первого и последнего, является произведением двух соседних с ним чисел. Первое число – это 7. Какое число последнее?

На доске написаны девять приведённых квадратных трёхчленов:  <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>,  <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>,  ...,  <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub>  и  <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub>  – арифметические прогрессии. Оказалось, что сумма все...

На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть ещё два, потом – ещё три, и, наконец, стереть ещё четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?

Последовательность чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  задана условиями  <i>a</i><sub>1</sub> = 1,  <i>a</i><sub>2</sub> = 143  и   <img align="absmiddle" src="/storage/problem-media/116589/problem_116589_img_2.gif">   при всех  <i>n</i> ≥ 2.

Докажите, что все члены последовательности – целые числа.

Сколько существует таких натуральных <i>n</i>, не превосходящих 2012, что сумма  1<sup><i>n</i></sup> + 2<sup><i>n</i></sup> + 3<sup><i>n</i></sup> + 4<sup><i>n</i></sup>  оканчивается на 0?

Функция <i>f</i>(<i>x</i>) определена на положительной полуоси и принимает только положительные значения. Известно, что  <i>f</i>(1) + <i>f</i>(2) = 10  и  <img align="absmiddle" src="/storage/problem-media/116433/problem_116433_img_2.gif">  при любых <i>а</i> и <i>b</i>. Найдите <i>f</i>(2<sup>2011</sup>).

В вершинах 33-угольника записали в некотором порядке целые числа от 1 до 33. Затем на каждой стороне написали сумму чисел в её концах.

Могут ли на сторонах оказаться 33 последовательных целых числа (в каком-нибудь порядке)?

Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла?

Двадцать детей – десять мальчиков и десять девочек – встали в ряд. Каждый мальчик сказал, сколько детей стоит справа от него, а каждая девочка – сколько детей стоит слева от неё. Докажите, что сумма чисел, названных мальчиками, равна сумме чисел, названных девочками.

Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?<div align="center"><img src="/storage/problem-media/115472/problem_115472_img_2.gif"></div>

Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

Все целые числа от<i> -</i>33до100включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число?

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (<i>k</i>-й сдвиг происходит на2<i><sup>k-</sup></i>1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?

Какова наибольшая длина арифметической прогрессии из натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> с разностью 2, обладающей свойством:  <img align="absmiddle" src="/storage/problem-media/110093/problem_110093_img_2.gif">  – простое при всех  <i>k</i> = 1, 2, ..., <i>n</i>?

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя последовательными членами арифметической прогрессии. Найдите все такие треугольники.

На доску последовательно выписываются числа  <i>a</i><sub>1</sub> = 1,  <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... по следующим правилам: <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub></i> – 2,  если число  <i>a<sub>n</sub></i> – 2  – натуральное и еще не выписано на доску, в противном случае  <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub></i> + 3.  Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.

Докажите тождество <center><i> <img src="/storage/problem-media/109569/problem_109569_img_2.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_3.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_4.gif">=

<img src="/storage/problem-media/109569/problem_109569_img_5.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_6.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_7.gif">.

</i></center>

Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.

Найти последние четыре цифры числа 5<sup>1965</sup>.

Из таблицы <div align="center"><img src="/storage/problem-media/109019/problem_109019_img_2.gif"></div>выбраны<i>a</i>чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.

При разложении чисел <i>A</i> и <i>B</i> в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  <i>A + B</i>?

Некоторые из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>200</sub>написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>100</sub>содержатся все натуральные числа от 1 до 100 включительно.

Можно ли рёбра <i>n</i>-угольной призмы раскрасить в три цвета так, чтобы на каждой грани были все три цвета и в каждой вершине сходились рёбра разных цветов, если   а)  <i>n</i> = 1995;   б)  <i>n</i> = 1996.

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:   <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка