Олимпиадные задачи по теме «Модуль числа» для 10 класса
Модуль числа
НазадПо кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.
Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.
Квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что <i>f</i> '(<i>x</i>)<i>g</i>'(<i>x</i>) ≥ |<i>f</i>(<i>x</i>)| + |<i>g</i>(<i>x</i>)| при всех действительных <i>x</i>.
Докажите, что произведение <i>f</i>(<i>x</i>)<i>g</i>(<i>x</i>) равно квадрату некоторого трёхчлена.
Даны числа<i>а</i><sub>1</sub>, ...,<i>а<sub>n</sub></i>. Для 1 ≤<i>i</i>≤<i>n</i>положим
<center>
<i>d<sub>i</sub></i> = MAX { <i>a<sub>j</sub></i> | 1 ≤ <i>j</i> ≤ <i>i</i> } - MIN { <i>a<sub>j</sub></i> | <i>i</i> ≤ <i>j</i> ≤ <i>n</i> }
<i>d</i> = MAX { <i>d<sup>i</sup></i> | 1 ≤ <i>i</i> ≤ <i>n</i> } </center> а) Доказать, что для любых<i>x</i><sub>1</sub>≤<i>x</i><sub>2</sub>≤ ... ≤<i>x</i><sub>n</sub>выполняется неравенство
<center&g...
Положительные числа <i>x, y, z</i> таковы, что модуль разности любых двух из них меньше 2.
Докажите, что  <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_2.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_3.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_4.gif"> > <i>x + y + z</i>.
Существует ли функция<i> f</i>(<i>x</i>), определенная при всех<i> x<img src="/storage/problem-media/110035/problem_110035_img_2.gif"><img src="/storage/problem-media/110035/problem_110035_img_3.gif"> </i>и для всех<i> x,y<img src="/storage/problem-media/110035/problem_110035_img_2.gif"><img src="/storage/problem-media/110035/problem_110035_img_3.gif"> </i>удовлетворяющая неравенству <center><i>
|f</i>(<i>x+y</i>)<i>+ sin x+ sin y|<</i>2<i>? </i></center>
Существуют ли действительные числа<i> a </i>,<i> b </i>и<i> c </i>такие, что при всех действительных<i> x </i>и<i> y </i>выполняется неравенство <center><i>
|x+a|+|x+y+b|+|y+c|>|x|+|x+y|+|y|? </i></center>
Дана функция<i> f</i>(<i>x</i>)<i> = | </i>4<i> - </i>4<i>|x|| - </i>2. Сколько решений имеет уравнение<i> f</i>(<i>f</i>(<i>x</i>))<i> = x </i>?
Какое наибольшее конечное число корней может иметь уравнение <center><i>
|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,
</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?
Даны три приведённых квадратных трехчлена: <i>P</i><sub>1</sub>(<i>x</i>), <i>P</i><sub>2</sub>(<i>x</i>) и <i>P</i><sub>3</sub>(<i>x</i>). Докажите, что уравнение |<i>P</i><sub>1</sub>(<i>x</i>)| + |<i>P</i><sub>2</sub>(<i>x</i>)| = |<i>P</i><sub>3</sub>(<i>x</i>)| имеет не более восьми корней.
Доказать, что выражение <center><i>
<img src="/storage/problem-media/108970/problem_108970_img_2.gif">+<img src="/storage/problem-media/108970/problem_108970_img_3.gif">
</i></center> равно 2, если<i> 1<= a <= 2 </i>, и равно<i> 2<img src="/storage/problem-media/108970/problem_108970_img_4.gif"> </i>, если<i> a>2 </i>.
Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями: <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|, причём 0 ≤ <i>x</i><sub>1</sub> ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.
За круглым столом сидят десять человек, перед каждым – несколько орехов. Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.
{<i>a<sub>n</sub></i>} – последовательность чисел между 0 и 1, в которой следом за <i>x</i> идёт 1 – |1 – 2<i>x</i>|.
а) Докажите, что если <i>a</i><sub>1</sub> рационально, то последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то <i>a</i><sub>1</sub> рационально.
Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина<i>n</i><sup>2</sup><i>d</i>, где<i>d</i>- разность прогрессии, а<i>n</i>- число ее членов?
Сумма модулей членов конечной арифметической прогрессии равна 100. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 100. Какие значения при этих условиях может принимать величина<i>n</i><sup>2</sup><i>d</i>, где<i>d</i>- разность прогрессии, а<i>n</i>- число ее членов?
Все значения квадратного трёхчлена <i>ax</i>² + <i>bx + c</i> на отрезке [0, 1] по модулю не превосходят 1.
Какое наибольшее значение при этом может иметь величина |<i>a| + |b| + |c</i>|?
Решите систему неравенств
|<i>x</i>| < |<i>y – z + t</i>|,
|<i>y</i>| < |<i>x – z + t</i>|,
|<i>z</i>| < |<i>x – y + t</i>|,
|<i>t</i>| < |<i>x – y + z</i>|.
Докажите, что система неравенств
|<i>x</i>| > |<i>y – z + t</i>|,
|<i>y</i>| > |<i>x – z + t</i>|,
|<i>z</i>| > |<i>x – y + t</i>|,
|<i>t</i>| > |<i>x – y + z</i>|
не имеет решений.
Натуральные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> таковы, что каждое не превышает своего номера (<i>a<sub>k</sub> ≤ k</i>) и сумма всех чисел – чётное число. Доказать, что одна из сумм <i>a</i><sub>1</sub> ± <i>a</i><sub>2</sub> ± ... ± <i>a<sub>n</sub></i> равна нулю.
Дана последовательность...,<i>a</i><sub>-n</sub>,...,<i>a</i><sub>-1</sub>,<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>,...,<i>a</i><sub>n</sub>,... бесконечная в обе стороны, причём каждый её член равен${\frac{1}{4}}$суммы двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть бесконечное число пар равных между собой чисел. (Пояснение: два члена, про которые известно, что они равны, не обязательно соседние).
Все коэффициенты многочлена равны 1, 0 или –1. Докажите, что все его действительные корни (если они существуют) заключены в отрезке [–2, 2].
<i>X</i> – число, большее 2. Некто пишет на карточках числа: 1, <i>X, X</i>², <i>X</i>³, <i>X</i><sup>4</sup>, ..., <i>X<sup>k</sup></i> (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.
Докажите, что<div align="CENTER"> $\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1, </div>если |<i>x</i>| < 1 и |<i>y</i>| < 1.
Решить уравнение: <img width="134" height="53" align="MIDDLE" border="0" src="/storage/problem-media/77908/problem_77908_img_2.gif"> + <img width="134" height="53" align="MIDDLE" border="0" src="/storage/problem-media/77908/problem_77908_img_3.gif"> = 1.