Олимпиадные задачи по теме «Графики и ГМТ на координатной плоскости» для 4-9 класса

На координатной плоскости задан график функции  <i>y = kx + b</i>  (см. рисунок). В той же координатной плоскости схематически постройте график функции  <i>y = kx</i>² + <i>bx</i>. <div align="center"><img src="/storage/problem-media/116806/problem_116806_img_2.gif"></div>

На рисунке изображен график функции  <i>у = kx + b</i> .  Сравните |<i>k</i>| и |<i>b</i>|. <div align="center"><img src="/storage/problem-media/116734/problem_116734_img_2.gif"></div>

Найдите такое значение $a > 1$,  при котором уравнение  $a^x = \log_a x$  имеет единственное решение.

Три спортсмена стартовали одновременно из точки <i>A</i> и бежали по прямой в точку <i>B</i> каждый со своей постоянной скоростью. Добежав до точки <i>B</i>, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке <i>A</i>. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от <i>A</i> до <i>B</i> равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?

На координатной плоскости изображен график функции  <i>y = ax</i>² + <i>c</i>  (см. рисунок). В каких точках график функции  <i>y = cx + a</i>  пересекает оси координат? <div align="center"><img src="/storage/problem-media/116009/problem_116009_img_2.gif"></div>

Найдите наименьшее значение  <i>x</i>² + <i>y</i>²,  если  <i>x</i><sup>2</sup> – <i>y</i>² + 6<i>x</i> + 4<i>y</i> + 5 = 0.

Семь лыжников с номерами 1, 2, ... , 7 ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Оказалось, что каждый лыжник ровно дважды участвовал в обгонах. (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.) По окончании забега должен быть составлен протокол, состоящий из номеров лыжников в порядке финиширования. Докажите, что в забеге с описанными свойствами может получиться не более двух различных протоколов.

Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)

После урока на доске остался график функции  <i>y = <sup>k</sup>/<sub>x</sub></i>  и пять прямых, параллельных прямой  <i>y = kx</i>  (<i>k</i> ≠ 0).

Найдите произведение абсцисс всех десяти точек пересечения.

В магазине продают DVD-диски – по одному и упаковками двух видов (упаковки разных видов различаются по количеству и стоимости). Вася подсчитал, сколько требуется денег, чтобы купить <i>N</i> дисков (если выгоднее всего купить больше дисков, чем нужно – Вася так и делает): <div align="center"><img src="/storage/problem-media/111639/problem_111639_img_2.gif"></div>Сколько дисков было в упаковках и по какой цене упаковки продавались? Какое количество денег необходимо Васе, чтобы купить не менее 29 дисков?

Графики функций  <i>у = х</i>² + <i>ах + b</i>  и  <i>у = х</i>² + <i>сх + d</i>  пересекаются в точке с координатами  (1, 1).  Сравните  <i>а</i><sup>5</sup> + <i>d</i><sup>6</sup>  и  <i>c</i><sup>6</sup> – <i>b</i><sup>5</sup>.

На оси <i>Ox</i> произвольно расположены различные точки  <i>X</i><sub>1</sub>, ..., <i>X<sub>n</sub></i>,  <i>n</i> ≥ 3.  Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось <i>Ox</i> в данных точках (и не пересекающие ееё в других точках). Пусть  <i>y = f</i><sub>1</sub>(<i>x</i>),  ...,  <i>y = f<sub>m</sub></i>(<i>x</i>)  – соответствующие параболы. Докажите, что парабола  <i>y = f</i><sub>1</sub>(<i>x</i>) + ... + <i>f<sub>m</sub></i>(<i>x</i>)  пересекает ось <i>Ox</i> в двух точках.

Дана функция<i> f</i>(<i>x</i>)<i> = | </i>4<i> - </i>4<i>|x|| - </i>2. Сколько решений имеет уравнение<i> f</i>(<i>f</i>(<i>x</i>))<i> = x </i>?

Дана последовательность неотрицательных чисел<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a<sub>n</sub> </i>. Для любого<i> k </i>от 1 до<i> n </i>обозначим через<i> m<sub>k</sub> </i>величину <center><i>

<img src="/storage/problem-media/109710/problem_109710_img_2.gif"><sub>l=</sub></i>1<i>,</i>2<i>,..,k <img src="/storage/problem-media/109710/problem_109710_img_3.gif">.

</i></center> Докажите, что при любом<i> α></i>0число тех<i> k </i>, для которых<i> m<sub>k</sub>>α </i>, меньше, чем<i>a<sub>1</sub>+...

Угол, образованный лучами  <i>y = x</i>  и  <i>y</i> = 2<i>x</i>  при  <i>x</i> ≥ 0,  высекает на параболе  <i>y = x</i>² + <i>px + q</i>  две дуги. Эти дуги спроектированы на ось <i>Ox</i>. Докажите, что проекция левой дуги на 1 короче проекции правой.

Прямые, параллельные оси <i>Ox</i>, пересекают график функции  <i>y = ax</i>³ + <i>bx</i>² + <i>cx + d</i>:  первая – в точках <i>A, D</i> и <i>E</i>, вторая – в точках <i>B, C</i> и <i>F</i> (см. рис.). Докажите, что длина проекции дуги <i>CD</i> на ось <i>Ox</i> равна сумме длин проекций дуг <i>AB</i> и <i>EF</i>. <div align="center"><img src="/storage/problem-media/109668/problem_109668_img_2.gif"></div>

Внутри параболы  <i>y = x</i>²  расположены несовпадающие окружности ω<sub>1</sub>, ω<sub>2</sub>, ω<sub>3</sub>, ... так, что при каждом <i>n</i> > 1 окружность ω<sub><i>n</i></sub> касается ветвей параболы и внешним образом окружности ω<sub><i>n</i>–1</sub> (см. рис.). Найдите радиус окружности σ<sub>1998</sub>, если известно, что диаметр ω<sub>1</sub> равен 1 и она касается параболы в её вершине. <div align="center"><img src="/storage/problem-media/109664/problem_109664_img_2.gif"></div>

Докажите, что любую функцию, определённую на всей оси, можно представить в виде суммы двух функций, график каждой из которой имеет ось симметрии.

На параболе  <i>y = x</i>²  выбраны четыре точки <i>A, B, C, D</i> так, что прямые <i>AB</i> и <i>CD</i> пересекаются на оси ординат.

Найдите абсциссу точки <i>D</i>, если абсциссы точек <i>A, B</i> и <i>C</i> равны <i>a, b</i> и <i>c</i> соответственно.

На рисунке изображены графики трёх квадратных трёчленов.

Можно ли подобрать такие числа <i>a, b</i> и <i>c</i>, чтобы это были графики трёхчленов  <i>ax</i>² + <i>bx + c,  bx</i>² + <i>cx + a</i>  и  <i>cx</i>² + <i>ax + b</i>? <div align="center"><img src="/storage/problem-media/109457/problem_109457_img_2.gif"></div>

Может ли вершина параболы  <i>у</i> = 4<i>х</i>² – 4(<i>а</i> + 1)<i>х + а</i>  лежать во второй координатной четверти при каком-нибудь значении <i>а</i>?

Сколько корней имеет уравнение<i> sin x=x/</i>100?

а) Известно, что область определения функции  <i>f</i>(<i>x</i>)  – отрезок  [–1, 1]  и  <i>f</i>(<i>f</i>(<i>x</i>)) = – <i>x</i>  при всех <i>x</i>, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции <i>f</i>(<i>x</i>). б) Можно ли это сделать, если область определения функции – интервал  (–1, 1)?  Вся числовая ось?

Даны такие действительные числа  <i>a</i><sub>1</sub> ≤ <i>a</i><sub>2</sub> ≤ <i>a</i><sub>3</sub>  и  <i>b</i><sub>1</sub> ≤ <i>b</i><sub>2</sub> ≤ <i>b</i><sub>3</sub>,  что <div align="CENTER"><i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + <i>a</i><sub>3</sub> = <i>b</i><sub>1</sub> + <i>b</i><sub>2</sub> + <i>b</i><sub>3</sub>,   <i>a</i><sub>1</sub><i>a</i><sub>2</sub> + <i>a</i><sub>2</sub><i>a</i><s...

Приведите пример многочлена <i>P</i>(<i>x</i>) степени 2001, для которого  <i>P</i>(<i>x</i>) + <i>P</i>(1 – <i>x</i>) ≡ 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка