Олимпиадные задачи по математике для 2-11 класса
Из каждого клетчатого квадрата со стороной 3 клетки вырезается фигура из пяти клеток с таким же периметром, как у квадрата, но площадью 5 клеток. Саша утверждает, что сможет вырезать семь таких различных фигур (никакие две из них не совместятся при наложении, даже если фигуры переворачивать). Не ошибается ли он?
Команды провели турнир по футболу в один круг (каждая с каждой сыграла один раз, победа – 3 очка, ничья – 1, поражение – 0). Оказалось, что единоличный победитель набрал менее 50% от количества очков, возможного для одного участника. Какое наименьшее количество команд могло участвовать в турнире?
Точка <i>M</i> – середина основания <i>AC</i> остроугольного равнобедренного треугольника <i>ABC</i>. Точка <i>N</i> симметрична <i>M</i> относительно <i>BC</i>. Прямая, параллельная <i>AC</i> и проходящая через точку <i>N</i>, пересекает сторону <i>AB</i> в точке <i>K</i>. Найдите угол <i>AKC</i>.
а) В футбольном турнире в один круг участвовало 75 команд. За победу в матче команда получала 3 очка, за ничью 1 очко, за поражение 0 очков. Известно, что каждые две команды набрали различное количество очков. Найдите наименьшую возможную разность очков у команд, занявших первое и последнее места.б) Тот же вопрос для <i>n</i> команд.
Дан произвольный треугольник <i>ABC</i>. Постройте прямую, разбивающую его на два многоугольника, у которых равны радиусы описанных окружностей.
Прямая <i>a</i> пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от <i>a</i> и не пересекающих <i>a</i>.
Bерно ли, что <i>a</i> перпендикулярна α?
<i>AD</i> и <i>BE</i> — высоты треугольника <i>ABC</i>. Оказалось, что точка <i>C'</i>, симметричная вершине <i>C</i> относительно середины отрезка <i>DE</i>, лежит на стороне <i>AB</i>. Докажите, что <i>AB</i> – касательная к окружности, описанной около треугольника <i>DEC'</i>.
Середина стороны треугольника и основание высоты, проведённой к этой стороне, симметричны относительно точки касания этой стороны с вписанной окружностью. Докажите, что эта сторона составляет треть периметра треугольника.
Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса.
В трапеции <i>ABCD</i> боковая сторона <i>AB</i> равна меньшему основанию <i>BC</i>, а диагональ <i>AC</i> равна основанию <i>AD</i>. Прямая, проходящая через вершину <i>B</i> параллельно <i>AC</i>, пересекает прямую <i>DC</i> в точке <i>M</i>. Докажите, что <i>AM</i> – биссектриса угла <i>BAC</i>.
Дан четырёхугольник <i>ABCD</i>. Оказалось, что описанная окружность треугольника <i>ABC</i>, касается стороны <i>CD</i>, а описанная окружность треугольника <i>ACD</i> касается стороны <i>AB</i>. Докажите, что диагональ <i>AC</i> меньше, чем расстояние между серединами сторон <i>AB</i> и <i>CD</i>.
Существует ли такой параллелограмм, что все точки попарных пересечений биссектрис его углов лежат вне параллелограмма?
Каждая диагональ четырёхугольника разбивает его на два равнобедренных треугольника. Верно ли, что четырёхугольник – ромб?
На стороне<i> AB </i>прямоугольника<i> ABCD </i>выбрана точка<i> M </i>. Через эту точку проведён перпендикуляр к прямой<i> CM </i>, который пересекает сторону <i> AD </i>в точке <i> E </i>. Точка<i> P </i> — основание перпендикуляра, опущенного из точки <i> M </i>на прямую <i> CE </i>. Найдите угол <i> APB </i>.
Легко разместить комплект кораблей для игры в "Морской бой" на доске 10× 10 (см. рис.). А на какой наименьшей квадратной доске можно разместить этот комплект? (Напомним, что согласно правилам корабли не должны соприкасаться даже углами.)
<center><i> <img align="absmiddle" src="/storage/problem-media/115384/problem_115384_img_2.gif"> </i></center>
После урока на доске остался график функции <i>y = <sup>k</sup>/<sub>x</sub></i> и пять прямых, параллельных прямой <i>y = kx</i> (<i>k</i> ≠ 0).
Найдите произведение абсцисс всех десяти точек пересечения.
На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально?
В футбольном чемпионате участвовали 16 команд. Каждая команда сыграла с каждой из остальных по одному разу, за победу давалось 3 очка, за ничью – 1 очко, за поражение – 0. Назовём команду <i>успешной</i>, если она набрала хотя бы половину от наибольшего возможного количества очков. Какое наибольшее количество успешных команд могло быть в турнире?
На параболе <i>y = x</i>² выбраны четыре точки <i>A, B, C, D</i> так, что прямые <i>AB</i> и <i>CD</i> пересекаются на оси ординат.
Найдите абсциссу точки <i>D</i>, если абсциссы точек <i>A, B</i> и <i>C</i> равны <i>a, b</i> и <i>c</i> соответственно.
На гипотенузе <i>AB</i> прямоугольного треугольника <i>ABC</i> во внешнюю сторону построен квадрат <i>ABDE</i>. Известно, что <i>AC</i> = 1, <i>BC</i> = 3.
В каком отношении делит сторону <i>DE</i> биссектриса угла <i>C</i>?
Существует ли тетраэдр, все грани которого — равные прямоугольные треугольники?
У квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 коэффициенты <i>p</i> и <i>q</i> увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.
Квадрат суммы цифр числа <i>A</i> равен сумме цифр числа <i>A</i><sup>2</sup>. Найдите все такие двузначные числа <i>A</i>.
Решите ребус: БАО×БА×Б = 2002.
Решите ребус: АХ×УХ = 2001.